Freezing the Motion in Hydroxy-Functionalized Ionic Liquids - Temperature Dependent NMR Deuteron Quadrupole Coupling Constants for two Types of Hydrogen Bonds far Below the Glass Transition.

We measured the deuteron quadrupole coupling constants (DQCCs) for hydroxy-functionalized ionic liquids (ILs) with varying alkyl chain length over the temperature range between 60 and 200 K by means of solid-state NMR spectroscopy. For all temperatures, the 2H spectra show two DQCCs representing different types of hydrogen bonding. Higher values, ranging from 220 to 250 kHz, indicate weaker hydrogen bonds between cation and anion (c-a), and lower values varying from 165 to 210 kHz result from stronger hydrogen bonds between the OD groups of cations (c-c), in agreement with recent observations in infrared, neutron diffraction and NMR studies. We observed different temperature dependencies for (c-a) and (c-c) hydrogen bonding. From the static pattern of the 2H spectra at the lowest temperatures, we derived the true DQCCs being up to 20 kHz larger than recently reported values measured at the glass transition temperature. Obviously, we were able to freeze the librational motions of the hydrogen bonds in the ILs. The temperature dependence of the (c-a) and (c-c) cluster populations in the glassy state is opposite to that observed in the liquid state, partly anticipating the behavior of ILs tending to crystallize.

[1]  R. Ludwig,et al.  Effect of Hydrogen Bonding between Ions of Like Charge on the Boundary Layer Friction of Hydroxy-Functionalized Ionic Liquids. , 2020, The journal of physical chemistry letters.

[2]  P. Stange,et al.  Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems , 2019, Angewandte Chemie.

[3]  J. Neumann,et al.  Die zweigesichtige Natur der Wasserstoffbrückenbindung in hydroxylfunktionalisierten ionischen Flüssigkeiten, offenbart durch Neutronendiffraktometrie und Molekulardynamik‐Simulation , 2019, Angewandte Chemie.

[4]  P. Stange,et al.  The double-faced nature of hydrogen bonding in hydroxyl-functionalized ionic liquids shown by neutron diffraction and molecular dynamics simulations. , 2019, Angewandte Chemie.

[5]  R. Ludwig,et al.  Spektroskopischer Nachweis einer attraktiven Kation‐Kation‐ Wechselwirkung in OH‐funktionalisierten ionischen Flüssigkeiten: ein H‐Brücken‐gebundenes kettenförmiges Trimer , 2018, Angewandte Chemie.

[6]  Mark A. Johnson,et al.  Spectroscopic Evidence for an Attractive Cation-Cation Interaction in Hydroxy-Functionalized Ionic Liquids: A Hydrogen-Bonded Chain-like Trimer. , 2018, Angewandte Chemie.

[7]  R. Ludwig,et al.  Cationic clustering influences the phase behaviour of ionic liquids , 2018, Scientific Reports.

[8]  Mark A. Johnson,et al.  Structural Motifs in Cold Ternary Ion Complexes of Hydroxyl-Functionalized Ionic Liquids: Isolating the Role of Cation-Cation Interactions. , 2018, The journal of physical chemistry letters.

[9]  J. Coutinho,et al.  Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends , 2017, Chemical reviews.

[10]  R. Ludwig,et al.  Anziehung gleich geladener Ionen in ionischen Flüssigkeiten: Kontrolle der Bildung kationischer Cluster über die Wechselwirkungsstärke der Gegenionen , 2017 .

[11]  R. Ludwig,et al.  When Like Charged Ions Attract in Ionic Liquids: Controlling the Formation of Cationic Clusters by the Interaction Strength of the Counterions. , 2017, Angewandte Chemie.

[12]  P. Stange,et al.  Spectroscopic Evidence for Clusters of Like‐Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  R. Ludwig,et al.  Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion , 2015, Scientific Reports.

[14]  R. Atkin,et al.  Structure and nanostructure in ionic liquids. , 2015, Chemical reviews.

[15]  Peter Stange,et al.  Steuerung der subtilen Energiebalance in protischen ionischen Flüssigkeiten: Dispersionskräfte im Wettstreit mit Wasserstoffbrücken , 2015 .

[16]  P. Stange,et al.  Controlling the subtle energy balance in protic ionic liquids: dispersion forces compete with hydrogen bonds. , 2015, Angewandte Chemie.

[17]  H. Salari,et al.  Hydroxyl-functionalized 1-(2-hydroxyethyl)-3-methyl imidazolium ionic liquids: thermodynamic and structural properties using molecular dynamics simulations and ab initio calculations. , 2014, The journal of physical chemistry. B.

[18]  N. Yan,et al.  How strong is hydrogen bonding in ionic liquids? Combined X-ray crystallographic, infrared/Raman spectroscopic, and density functional theory study. , 2013, The journal of physical chemistry. B.

[19]  A. Balducci,et al.  Protic ionic liquids as electrolytes for lithium-ion batteries , 2013 .

[20]  R. Ludwig,et al.  Dissecting anion-cation interaction energies in protic ionic liquids. , 2013, Angewandte Chemie.

[21]  R. Giernoth Task-specific ionic liquids. , 2010, Angewandte Chemie.

[22]  R. Ludwig,et al.  Strong, localized, and directional hydrogen bonds fluidize ionic liquids. , 2008, Angewandte Chemie.

[23]  Lars Kloo,et al.  Ionic liquid electrolytes for dye-sensitized solar cells. , 2008, Dalton transactions.

[24]  H. Weingärtner,et al.  Understanding ionic liquids at the molecular level: facts, problems, and controversies. , 2008, Angewandte Chemie.

[25]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[26]  James H. Davis Task-Specific Ionic Liquids , 2004 .

[27]  R. P. Swatloski,et al.  Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. , 2002, Environmental science & technology.

[28]  R. Ludwig,et al.  Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water , 1995 .

[29]  R. Eggenberger,et al.  Ab initio calculation of the deuterium quadrupole coupling in liquid water , 1992 .

[30]  A. Pines,et al.  Observation of molecular reorientation in ice by proton and deuterium magnetic resonance , 1988 .

[31]  H. Huber Deuterium quadrupole coupling constants. A theoretical investigation , 1985 .

[32]  N. Hush,et al.  The effect of intermolecular interactions on the 2H and 17O quadrupole coupling constants in ice and liquid water , 1985 .

[33]  J. Leyte,et al.  Determination of the Rotational Correlation Time of Water by Proton NMR Relaxation in H217O and Some Related Results , 1982 .

[34]  A. MacKay,et al.  The pure quadrupole resonance of the deuteron in ice , 1975 .

[35]  J. A. Jackson,et al.  Nuclear Magnetic Resonance of Single Crystals of D2O Ice , 1964 .

[36]  J G Powles,et al.  Zero Time Resolution Nuclear Magnetic Resonance Transient in Solids , 1963 .

[37]  G. Pake Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line , 1948 .