Brillouin Light Scattering: Applications in Biomedical Sciences

Brillouin spectroscopy and imaging are emerging techniques in analytical science, biophotonics, and biomedicine. They are based on Brillouin light scattering from acoustic waves or phonons in the GHz range, providing a nondestructive contactless probe of the mechanics on a microscale. Novel approaches and applications of these techniques to the field of biomedical sciences are discussed, highlighting the theoretical foundations and experimental methods that have been developed to date. Acknowledging that this is a fast moving field, a comprehensive account of the relevant literature is critically assessed here.

[1]  Carl Paterson,et al.  Elastic suppression in Brillouin imaging by destructive interference , 2015 .

[2]  M. Durrieu,et al.  Universality of the network-dynamics of the cell nucleus at high frequencies. , 2014, Soft matter.

[3]  M. Matsukawa,et al.  Local ultrasonic wave velocities in trabeculae measured by micro-Brillouin scattering. , 2014, Journal of the Acoustical Society of America.

[4]  Carl Paterson,et al.  Assessing corneal biomechanics with Brillouin spectro-microscopy. , 2016, Faraday discussions.

[5]  G. Ruocco,et al.  Origin of the lambda transition in liquid sulfur. , 2007, Physical review letters.

[6]  J. Vanderwal,et al.  Brillouin scattering study of gelatin gel , 1997 .

[7]  S. Ramtani,et al.  Characterization of elastomeric scaffolds developed for tissue engineering applications by compression and nanoindentation tests, μ-Raman and μ-Brillouin spectroscopies. , 2019, Biomedical optics express.

[8]  E. Gross Change of Wave-length of Light due to Elastic Heat Waves at Scattering in Liquids. , 1930, Nature.

[9]  Jürgen Czarske,et al.  Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging , 2018, Biophysical journal.

[10]  H. G. Danielmeyer Aperture Corrections for Sound‐Absorption Measurements with Light Scattering , 1970 .

[11]  S Cusack,et al.  Determination of the elastic constants of collagen by Brillouin light scattering. , 1979, Journal of molecular biology.

[12]  Giuliano Scarcelli,et al.  Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus. , 2017, Lab on a chip.

[13]  UK,et al.  High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy , 2017, 1702.06707.

[14]  M. Shirasaki Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. , 1996, Optics letters.

[15]  S. Yun,et al.  Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy , 2011, Optics express.

[16]  Stuart A. Rice,et al.  Absorption and Dispersion of Ultrasonic Waves , 1960 .

[17]  J. Randall,et al.  Brillouin scattering in systems of biological significance , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  T. Litovitz,et al.  Brillouin Scattering and Relaxation in Liquids , 1968 .

[19]  Pilhan Kim,et al.  In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. , 2011, Biophysical journal.

[20]  K. Chou,et al.  Collective motion in DNA and its role in drug intercalation , 1988, Biopolymers.

[21]  S. Yun,et al.  In vivo biomechanical mapping of normal and keratoconus corneas. , 2015, JAMA ophthalmology.

[22]  Kristie J. Koski,et al.  Non-invasive determination of the complete elastic moduli of spider silks. , 2013, Nature materials.

[23]  D. Fioretto,et al.  Brillouin scattering of phonons in complex materials , 2018 .

[24]  S. Orfanos,et al.  Yeast Biofilm as a Bridge Between Medical and Environmental Microbiology Across Different Detection Techniques , 2018, Infectious Diseases and Therapy.

[25]  J. Randall,et al.  Brillouin scattering, density and elastic properties of the lens and cornea of the eye , 1980, Nature.

[26]  A. Fontana,et al.  Raman-scattering measurements of the vibrational density of states of a reactive mixture during polymerization: effect on the boson peak. , 2009, Physical review letters.

[27]  Peter Sollich,et al.  Rheology of Soft Glassy Materials , 1996, cond-mat/9611228.

[28]  Oliver Stachs,et al.  Ex Vivo Measurement of Postmortem Tissue Changes in the Crystalline Lens by Brillouin Spectroscopy and Confocal Reflectance Microscopy , 2012, IEEE Transactions on Biomedical Engineering.

[29]  Giuseppe Antonacci,et al.  Biomechanics of subcellular structures by non-invasive Brillouin microscopy , 2016, Scientific Reports.

[30]  Marlan O Scully,et al.  Dual Raman-Brillouin Microscope for Chemical and Mechanical Characterization and Imaging. , 2015, Analytical chemistry.

[31]  S. Fujime,et al.  [Dynamic light-scattering]. , 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[32]  D. Fioretto,et al.  Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. , 2017, Journal of innovative optical health sciences.

[33]  D. Fioretto,et al.  Extended frequency range depolarized light scattering study of N-acetyl-leucine-methylamide-water solutions. , 2011, Journal of the American Chemical Society.

[34]  N Stone,et al.  Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy. , 2014, The Analyst.

[35]  I. M. Ward,et al.  Structure and properties of oriented polymers , 1975 .

[36]  Dirk Schneider,et al.  Nonlinear control of high-frequency phonons in spider silk. , 2016, Nature materials.

[37]  Giuliano Scarcelli,et al.  High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media , 2016, Applied physics letters.

[38]  Giuliano Scarcelli,et al.  Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography , 2018, Birth defects research.

[39]  S. Yun,et al.  Brillouin optical microscopy for corneal biomechanics. , 2012, Investigative ophthalmology & visual science.

[40]  N. Stefanou,et al.  Observation and tuning of hypersonic bandgaps in colloidal crystals , 2006, Nature materials.

[41]  S. Lindsay,et al.  Dynamic coupling between DNA and its primary hydration shell studied by brillouin scattering , 1988, Biopolymers.

[42]  J. M. Vaughan The Fabry-Perot Interferometer : History, Theory, Practice and Applications , 2017 .

[43]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[44]  M. Matsukawa,et al.  Application of a micro-Brillouin scattering technique to characterize bone in the GHz range. , 2014, Ultrasonics.

[45]  S. Corezzi,et al.  Cauchy relation in relaxing liquids. , 2008, The Journal of chemical physics.

[46]  Zhaokai Meng,et al.  Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements. , 2015, The Analyst.

[47]  S. Corezzi,et al.  Dynamics of density fluctuations of a glass-forming epoxy resin revealed by Brillouin light scattering , 1999 .

[48]  Eugène Dieulesaint,et al.  Elastic Waves in Solids II , 2000 .

[49]  R. Pini,et al.  Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies , 2019, Communications Biology.

[50]  Giuliano Scarcelli,et al.  Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging , 2016, Scientific Reports.

[51]  Vladislav V. Yakovlev,et al.  Background clean-up in Brillouin microspectroscopy of scattering medium. , 2014, Optics express.

[52]  Hugh Barr,et al.  Chemico‐mechanical imaging of Barrett's oesophagus , 2016, Journal of biophotonics.

[53]  Zhaokai Meng,et al.  Subcellular measurements of mechanical and chemical properties using dual Raman‐Brillouin microspectroscopy , 2016, Journal of biophotonics.

[54]  D. Fioretto,et al.  More Is Different: Experimental Results on the Effect of Biomolecules on the Dynamics of Hydration Water. , 2013, The journal of physical chemistry letters.

[55]  T. Duffy,et al.  Brillouin Scattering and its Application in Geosciences , 2014 .

[56]  G. Ruocco,et al.  Glass transition and density fluctuations in the fragile glass former orthoterphenyl. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  S. Lindsay,et al.  The dynamics of the DNA hydration shell at gigahertz frequencies , 1987, Biopolymers.

[58]  Paul A. Janmey,et al.  Resemblance of actin-binding protein/actin gels to covalently crosslinked networks , 1990, Nature.

[59]  Alice Berthelot,et al.  High-Frequency Mechanical Properties of Tumors Measured by Brillouin Light Scattering. , 2019, Physical review letters.

[60]  O. Stachs,et al.  Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens , 2011, Biomedical optics express.

[61]  Itay Remer,et al.  High-speed stimulated Brillouin scattering spectroscopy at 780 nm , 2016 .

[62]  Zhaokai Meng,et al.  Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks. , 2017, ACS nano.

[63]  Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains , 2018, The Analyst.

[64]  Ryan S. Edginton,et al.  Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy , 2016, Journal of visualized experiments : JoVE.

[65]  D. Jackson,et al.  Brillouin scattering study of gelatin gel using a double passed Fabry-Perot spectrometer , 1976 .

[66]  R. Pecora Dynamic Light Scattering , 1985 .

[67]  G. Ruocco,et al.  Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS , 2018, Communications Biology.

[68]  Silvia Caponi,et al.  Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering , 2014, Journal of The Royal Society Interface.

[69]  D. Navajas,et al.  Scaling the microrheology of living cells. , 2001, Physical review letters.

[70]  F. Rico,et al.  High-frequency microrheology reveals cytoskeleton dynamics in living cells , 2017, Nature Physics.

[71]  S. Yun,et al.  Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. , 2014, Investigative ophthalmology & visual science.

[72]  Rob Krams,et al.  Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma , 2015, Journal of The Royal Society Interface.

[73]  Giuliano Scarcelli,et al.  In Vivo Brillouin Analysis of the Aging Crystalline Lens , 2016, Investigative ophthalmology & visual science.

[74]  P. Janmey,et al.  Elasticity of semiflexible biopolymer networks. , 1995, Physical review letters.

[75]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[76]  J. Guck,et al.  Mechanical mapping of spinal cord development and repair in living zebrafish larvae using Brillouin microscopy , 2017, bioRxiv.

[77]  E Gratton,et al.  Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. , 1995, Biophysical journal.

[78]  Zhaokai Meng,et al.  Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis , 2015, Journal of biophotonics.

[79]  J. Vaughan,et al.  Observation of Brillouin scattering from single muscle fibres , 1989, European Biophysics Journal.

[80]  E. Sackmann,et al.  Temperature-induced sol-gel transition and microgel formation in alpha -actinin cross-linked actin networks: A rheological study. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[81]  Zhaokai Meng,et al.  Optical assessment of changes in mechanical and chemical properties of adipose tissue in diet‐induced obese rats , 2017, Journal of biophotonics.

[82]  J. Dil Brillouin scattering in condensed matter , 1982 .

[83]  Giuliano Scarcelli,et al.  Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. , 2017, Journal of biomedical optics.

[84]  S. Yun,et al.  Confocal Brillouin microscopy for three-dimensional mechanical imaging. , 2007, Nature photonics.

[85]  S. A. Lee,et al.  A Brillouin scattering study of the hydration of Li‐ and Na‐DNA films , 1987, Biopolymers.

[86]  D. Fioretto,et al.  High-contrast Brillouin and Raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. , 2017, Biophysical chemistry.

[87]  F. Scarponi,et al.  Dynamics of a glassy polymer studied by Brillouin light scattering , 2009 .

[88]  Carl Paterson,et al.  Spectral broadening in Brillouin imaging , 2013 .

[89]  S. Yun,et al.  In vivo Brillouin optical microscopy of the human eye , 2012, Optics express.

[90]  P. Laugier,et al.  Comparative investigation of elastic properties in a trabecula using micro-Brillouin scattering and scanning acoustic microscopy. , 2012, The Journal of the Acoustical Society of America.

[91]  S. Rice,et al.  Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging , 2017, npj Biofilms and Microbiomes.

[92]  Frédéric Galland,et al.  Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion , 2015, Journal of biomedical optics.

[93]  Vladislav V. Yakovlev,et al.  Stimulated Brillouin Scattering Microscopic Imaging , 2015, Scientific Reports.

[94]  D. Fioretto,et al.  Progress in Liquid and Glass Physics by Brillouin Scattering Spectroscopy , 2012 .

[95]  S. Corezzi,et al.  Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water. , 2016, Soft matter.

[96]  J. White,et al.  Phonons and the elastic moduli of collagen and muscle , 1977, Nature.

[97]  William J. Polacheck,et al.  Noncontact three-dimensional mapping of intracellular hydro-mechanical properties by Brillouin microscopy , 2015, Nature Methods.

[98]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .

[99]  Julian Moger,et al.  Clinical applications of infrared and Raman spectroscopy: state of play and future challenges. , 2018, The Analyst.

[100]  H. Senn,et al.  Terahertz underdamped vibrational motion governs protein-ligand binding in solution , 2014, Nature Communications.

[101]  T. Wohland,et al.  Applications of imaging fluorescence correlation spectroscopy. , 2014, Current opinion in chemical biology.

[102]  Ryan S. Edginton,et al.  Dual scale biomechanics of extracellular matrix proteins probed by Brillouin scattering and quasistatic tensile testing , 2018, BiOS.

[103]  G. Parisi,et al.  Phonon interpretation of the ‘boson peak’ in supercooled liquids , 2003, Nature.

[104]  S. Corezzi,et al.  A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles , 2018, Journal of Molecular Liquids.

[105]  Kareem Elsayad,et al.  Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging , 2016, Science Signaling.

[106]  Giuliano Scarcelli,et al.  Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. , 2017, Optics express.

[107]  Silvia Caponi,et al.  Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques , 2017, Light: Science & Applications.

[108]  M. Matsukawa,et al.  Measurement of Wave Velocity in Cortical Bone by Micro-Brillouin Scattering Technique: Effect of Bone Tissue Properties , 2012 .