GaussStones: shielded magnetic tangibles for multi-token interactions on portable displays

This work presents GaussStones, a system of shielded magnetic tangibles design for supporting multi-token interactions on portable displays. Unlike prior works in sensing magnetic tangibles on portable displays, the proposed tangible design applies magnetic shielding by using an inexpensive galvanized steel case, which eliminates interference between magnetic tangibles. An analog Hall-sensor grid can recognize the identity of each shielded magnetic unit since each unit generates a magnetic field with a specific intensity distribution and/or polarization. Combining multiple units as a knob further allows for resolving additional identities and their orientations. Enabling these features improves support for applications involving multiple tokens. Thus, using prevalent portable displays provides generic platforms for tangible interaction design.

[1]  Ian Oakley,et al.  Designing tangible magnetic appcessories , 2013, TEI '13.

[2]  Jun Rekimoto,et al.  SmartSkin: an infrastructure for freehand manipulation on interactive surfaces , 2002, CHI.

[3]  Sergi Jordà,et al.  The reacTable: exploring the synergy between live music performance and tabletop tangible interfaces , 2007, TEI.

[4]  Hiroshi Ishii,et al.  Tangible bits: beyond pixels , 2008, TEI.

[5]  Andreas M. Kunz,et al.  MightyTrace: multiuser tracking technology on lc-displays , 2008, CHI.

[6]  Philip Tuddenham,et al.  Graspables revisited: multi-touch vs. tangible input for tabletop displays in acquisition and manipulation tasks , 2010, CHI.

[7]  Michael Haller,et al.  Geckos: combining magnets and pressure images to enable new tangible-object design and interaction , 2011, CHI.

[8]  Li-Wei Chan,et al.  GaussBits: magnetic tangible bits for portable and occlusion-free near-surface interactions , 2013, CHI Extended Abstracts.

[9]  James D. Hollan,et al.  SLAP widgets: bridging the gap between virtual and physical controls on tabletops , 2009, CHI Extended Abstracts.

[10]  Patrick Baudisch,et al.  Lumino: tangible blocks for tabletop computers based on glass fiber bundles , 2010, CHI.

[11]  Li-Wei Chan,et al.  TUIC: enabling tangible interaction on capacitive multi-touch displays , 2011, CHI.

[12]  William Buxton,et al.  ThinSight: versatile multi-touch sensing for thin form-factor displays , 2007, UIST.

[13]  Yuichi Itoh,et al.  PUCs: detecting transparent, passive untouched capacitive widgets on unmodified multi-touch displays , 2013, ITS.

[14]  Bing-Yu Chen,et al.  GaussSense: attachable stylus sensing using magnetic sensor grid , 2012, UIST '12.

[15]  Hiroshi Ishii,et al.  Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices , 2012, UIST.

[16]  Tsuneji Rikitake Magnetic and electromagnetic shielding , 1987 .

[17]  Sungjae Hwang,et al.  MagGetz: customizable passive tangible controllers on and around conventional mobile devices , 2013, UIST.

[18]  Hiroshi Ishii,et al.  Illuminating clay: a 3-D tangible interface for landscape analysis , 2002, CHI.

[19]  Hiroshi Ishii,et al.  Mechanical constraints as computational constraints in tabletop tangible interfaces , 2007, CHI.

[20]  Hiroshi Ishii,et al.  Sensetable: a wireless object tracking platform for tangible user interfaces , 2001, CHI.

[21]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[22]  Stefanie Müller,et al.  CapStones and ZebraWidgets: sensing stacks of building blocks, dials and sliders on capacitive touch screens , 2012, CHI.

[23]  Jacob O. Wobbrock,et al.  Portico: tangible interaction on and around a tablet , 2011, UIST.

[24]  James D. Hollan,et al.  SLAP widgets: bridging the gap between virtual and physical controls on tabletops , 2009, CHI.