An improved interactive hybrid method for the linear multi-objective knapsack problem
暂无分享,去创建一个
[1] Behnam Malakooti. Theories and an exact interactive paired-comparison approach for discrete multiple-criteria problems , 1989, IEEE Trans. Syst. Man Cybern..
[2] Gordon B. Hazen,et al. Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..
[3] Behnam Malakooti,et al. Identifying nondominated alternatives with partial information for multiple-objective discrete and linear programming problems , 1989, IEEE Trans. Syst. Man Cybern..
[4] Behnam Malakooti. Ranking multiple criteria alternatives with half-space, convex, and non-convex dominating cones: quasi-concave and quasi-convex multiple attribute utility functions , 1989, Comput. Oper. Res..
[5] R. Soland,et al. An interactive branch-and-bound algorithm for multiple criteria optimization , 1986 .
[6] Yacov Y. Haimes,et al. Decision Making with Multiple Objectives , 1985 .
[7] S. Zionts,et al. Preference structure representation using convex cones in multicriteria integer programming , 1989 .
[8] Thomas L. Morin,et al. Branch-and-Bound Strategies for Dynamic Programming , 2015, Oper. Res..
[9] H. Moskowitz,et al. Generalized dynamic programming for multicriteria optimization , 1990 .
[10] L. G. Mitten. Preference Order Dynamic Programming , 1974 .
[11] S. Zionts,et al. Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .
[12] Lori S. Franz,et al. An Interactive Procedure for Solving Multiple Objective Integer Linear Programming Problems , 1985 .
[13] B. Malakooti. Assessment through strength of preference , 1985 .