A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies

In this paper we consider a nonlocal anisotropic model for phase separation in two-phase fluids at equilibrium, and show that when the thickness of the interface tends to zero in a suitable way, the classical surface tension model is recovered. Relevant examples are given by continuum limits of ferromagnetic Ising systems in equilibrium statistical mechanics.

[1]  Giovanni Alberti,et al.  Surface tension in Ising systems with Kac potentials , 1996 .

[2]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[3]  G. Bouchitté,et al.  Singular perturbations of variational problems arising from a two-phase transition model , 1990 .

[4]  Michelle Schatzman,et al.  Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.

[5]  G. Bouchitte,et al.  Un resultat de perturbations singulieres avec la norme H 1/2 , 1994 .

[6]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .

[7]  Giovanni Alberti,et al.  A nonlocal anisotropic model for phase transitions , 1998 .

[8]  Peter Sternberg,et al.  Nonconvex variational problems with anisotropic perturbations , 1991 .

[9]  Stephan Luckhaus,et al.  The Gibbs-Thompson relation within the gradient theory of phase transitions , 1989 .

[10]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[11]  Constrained minima of nonlocal free energy functionals , 1996 .

[12]  Panagiotis E. Souganidis,et al.  Stochastic Ising models and anisotropic front propagation , 1997 .

[13]  L. Evans Measure theory and fine properties of functions , 1992 .

[14]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[15]  P. Souganidis,et al.  Interacting particle systems and generalized evolution of fronts , 1994 .

[16]  Giovanni Alberti,et al.  Variational models for phase transitions, an approach via Γ-convergence , 2000 .

[17]  P. Souganidis,et al.  Generalized motion by mean curvature as a macroscopic limit of stochastic ising models with long range interactions and Glauber dynamics , 1995 .

[18]  Ana Cristina Barroso,et al.  Anisotropic singular perturbations—the vectorial case , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[20]  Motion by curvature by scaling nonlocal evolution equations , 1993 .

[21]  Irene Fonseca,et al.  A Global Method for Relaxation , 1998 .

[22]  Enza Orlandi,et al.  Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics , 1994 .

[23]  Irene Fonseca,et al.  Relaxation of quasiconvex functional in BV(Ω, ℝp) for integrands f(x, u,∇;u) , 1993 .

[24]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[25]  E. Orlandi,et al.  Stability of the interface in a model of phase separation , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .