Complexity and approximation for precedence constrained scheduling problems with large communication delays

We investigate the problem of minimizing the makespan (resp. the sum of completion time) for the multiprocessor scheduling problem. We show that there is no hope of finding a @r-approximation with @r =2.

[1]  Han Hoogeveen,et al.  Three, four, five, six, or the complexity of scheduling with communication delays , 1994, Oper. Res. Lett..

[2]  Yaacov Yesha,et al.  A Scheduling Principle for Precedence Graphs with Communication Delay , 1992, International Conference on Parallel Processing.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Claire Hanen,et al.  Using Duplication for Scheduling Unitary Tasks on m Processors with Unit Communication Delays , 1997, Theor. Comput. Sci..

[5]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[6]  Jean-Claude König,et al.  Complexity and Approximation for the Precedence Constrained Scheduling Problem with Large Communication Delays , 2005, Euro-Par.

[7]  Mihalis Yannakakis,et al.  Towards an Architecture-Independent Analysis of Parallel Algorithms , 1990, SIAM J. Comput..

[8]  Christophe Rapine Algorithmes d'approximation garantie pour l'ordonnancement de tâches , 1999 .

[9]  Jean-Claude König,et al.  A Heuristic for a Scheduling Problem with Communication Delays , 1997, Oper. Res..

[10]  C. Hanen,et al.  An approximation algorithm for scheduling dependent tasks on m processors with small communication delays , 1995, Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies and Factory Automation. ETFA'95.

[11]  Alix Munier Kordon Approximation algorithms for scheduling trees with general communication delays , 1999, Parallel Comput..

[12]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[13]  Evripidis Bampis,et al.  On the complexity of scheduling with large communication delays , 1996 .

[14]  Alix Munier Approximation of algorithms for scheduling trees with general communication delays , 1999 .

[15]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[16]  Han Hoogeveen,et al.  Non-approximability Results for Scheduling Problems with Minsum Criteria , 1998, IPCO.

[17]  Victor J. Rayward-Smith,et al.  UET scheduling with unit interprocessor communication delays , 1987, Discret. Appl. Math..

[18]  Philippe Chrétienne,et al.  C.P.M. Scheduling with Small Communication Delays and Task Duplication , 1991, Oper. Res..

[19]  Claire Hanen,et al.  An approximation algorithm for scheduling dependent tasks on m processors with small communication delays , 2001, Discret. Appl. Math..

[20]  Christophe Picouleau New Complexity Results on Scheduling with Small Communication Delays , 1995, Discret. Appl. Math..

[21]  Z Liu,et al.  Scheduling Theory and its Applications , 1997 .

[22]  B. J. Lageweg,et al.  Multiprocessor scheduling with communication delays , 1990, Parallel Comput..

[23]  Maciej Drozdowski,et al.  Scheduling with Communication Delays , 2009 .

[24]  Rodolphe Giroudeau,et al.  L'impact des delais de communications hierarchiques sur la complexite et l'approximation des problemes d'ordonnancement , 2000 .

[25]  Gerhard J. Woeginger,et al.  A Review of Machine Scheduling: Complexity, Algorithms and Approximability , 1998 .