暂无分享,去创建一个
Xuefeng Liu | Qin Li | Meiling Yue | Meiling Yue | Qin Li | Xuefeng Liu
[1] Jiguang Sun,et al. Spectral Indicator Method for a Non-selfadjoint Steklov Eigenvalue Problem , 2018, Journal of Scientific Computing.
[2] Hehu Xie,et al. Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.
[3] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[4] Qun Lin,et al. Extrapolation and superconvergence of the Steklov eigenvalue problem , 2010, Adv. Comput. Math..
[5] Fumio Kikuchi,et al. Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .
[6] Hehu Xie,et al. Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem , 2018, SIAM J. Numer. Anal..
[7] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[8] Xuefeng Liu,et al. Verified eigenvalue evaluation for Laplace operator on arbitrary polygonal domain (Mathematical foundation and development of algorithms for scientific computing) , 2011 .
[9] Kenta Kobayashi,et al. On the Interpolation Constants over Triangular Elements , 2014 .
[10] C. D. Boor,et al. Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .
[11] Yu Zhang,et al. Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem , 2018, Comput. Math. Appl..
[12] Anahí Dello Russo,et al. A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems , 2011, Comput. Math. Appl..
[13] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..
[14] Hehu Xie,et al. Computable Error Estimates for a Nonsymmetric Eigenvalue Problem , 2017 .
[15] Yidu Yang,et al. A two-grid discretization scheme for the Steklov eigenvalue problem , 2011 .
[16] Jun Hu,et al. The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.
[17] Iosif Polterovich,et al. The legacy of Vladimir Andreevich Steklov , 2014 .
[18] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.
[19] Hehu Xie,et al. Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements , 2018 .
[20] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[21] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[22] Tomás Vejchodský,et al. Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..
[23] Xuefeng Liu. A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..
[24] Franco Brezzi Michel Fortin,et al. Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .
[25] Alfredo Bermúdez,et al. A finite element solution of an added mass formulation for coupled fluid-solid vibrations , 2000, Numerische Mathematik.
[26] John E. Osborn,et al. APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .
[27] Xuefeng Liu,et al. Explicit Finite Element Error Estimates for Nonhomogeneous Neumann Problems , 2018, Applications of Mathematics.
[28] Yidu Yang,et al. Nonconforming finite element approximations of the Steklov eigenvalue problem , 2009 .
[29] Peter Monk,et al. Stekloff Eigenvalues in Inverse Scattering , 2016, SIAM J. Appl. Math..
[30] Claudio Padra,et al. A posteriori error estimates for the Steklov eigenvalue problem , 2008 .
[31] S. Bergman,et al. Kernel Functions and Elliptic Differential Equations in Mathematical Physics , 2005 .
[32] Carsten Carstensen,et al. Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..