Guaranteed Lower Eigenvalue Bound of Steklov Operator with Conforming Finite Element Methods

For the eigenvalue problem of the Steklov differential operator, by following Liu's approach, an algorithm utilizing the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed method requires the a priori error estimation for FEM solution to nonhomogeneous Neumann problems, which is solved by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples are also shown to confirm the efficiency of our proposed method.

[1]  Jiguang Sun,et al.  Spectral Indicator Method for a Non-selfadjoint Steklov Eigenvalue Problem , 2018, Journal of Scientific Computing.

[2]  Hehu Xie,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.

[3]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[4]  Qun Lin,et al.  Extrapolation and superconvergence of the Steklov eigenvalue problem , 2010, Adv. Comput. Math..

[5]  Fumio Kikuchi,et al.  Estimation of interpolation error constants for the P0 and P1 triangular finite elements , 2007 .

[6]  Hehu Xie,et al.  Guaranteed Eigenvalue Bounds for the Steklov Eigenvalue Problem , 2018, SIAM J. Numer. Anal..

[7]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[8]  Xuefeng Liu,et al.  Verified eigenvalue evaluation for Laplace operator on arbitrary polygonal domain (Mathematical foundation and development of algorithms for scientific computing) , 2011 .

[9]  Kenta Kobayashi,et al.  On the Interpolation Constants over Triangular Elements , 2014 .

[10]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[11]  Yu Zhang,et al.  Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem , 2018, Comput. Math. Appl..

[12]  Anahí Dello Russo,et al.  A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems , 2011, Comput. Math. Appl..

[13]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[14]  Hehu Xie,et al.  Computable Error Estimates for a Nonsymmetric Eigenvalue Problem , 2017 .

[15]  Yidu Yang,et al.  A two-grid discretization scheme for the Steklov eigenvalue problem , 2011 .

[16]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[17]  Iosif Polterovich,et al.  The legacy of Vladimir Andreevich Steklov , 2014 .

[18]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[19]  Hehu Xie,et al.  Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements , 2018 .

[20]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[21]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[22]  Tomás Vejchodský,et al.  Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..

[23]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[24]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[25]  Alfredo Bermúdez,et al.  A finite element solution of an added mass formulation for coupled fluid-solid vibrations , 2000, Numerische Mathematik.

[26]  John E. Osborn,et al.  APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .

[27]  Xuefeng Liu,et al.  Explicit Finite Element Error Estimates for Nonhomogeneous Neumann Problems , 2018, Applications of Mathematics.

[28]  Yidu Yang,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem , 2009 .

[29]  Peter Monk,et al.  Stekloff Eigenvalues in Inverse Scattering , 2016, SIAM J. Appl. Math..

[30]  Claudio Padra,et al.  A posteriori error estimates for the Steklov eigenvalue problem , 2008 .

[31]  S. Bergman,et al.  Kernel Functions and Elliptic Differential Equations in Mathematical Physics , 2005 .

[32]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..