Numerical shakedown analysis of damaged structures

A numerical method is proposed to predict the failure of mechanical structures. It is based on the generalization of the classical static shakedown theorem to damaged inelastic structures. Ductile plastic damage is taken into account by using the models of Lemaitre and Shichun-Hua. The obtained results are compared in the special case of limit analysis to those obtained by incremental methods.

[1]  D. Weichert,et al.  The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition , 1988 .

[2]  Giulio Maier,et al.  Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models , 1995 .

[3]  Philip G. Hodge,et al.  Limit Analysis of Structures at Thermal Cycling , 1980 .

[4]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[5]  Wang June,et al.  An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates , 1985 .

[6]  Ernst Melan,et al.  Zur Plastizität des räumlichen Kontinuums , 1938 .

[7]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[8]  N. Hung,et al.  Bornes quasi-inferieures et bornes superieures de la pression de ruine des coques de revolution par la methode des elements finis et par la programmation non-lineaire , 1978 .

[9]  Jan A. König,et al.  Shakedown of Elastic-Plastic Structures , 1987 .

[10]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[11]  Erwin Stein,et al.  Modeling and computation of shakedown problems for nonlinear hardening materials , 1993 .

[12]  D. Weichert,et al.  Elastic-plastic shells under variable mechanical and thermal loads , 1992 .

[13]  R. M. Haythornthwaite,et al.  Limit Analysis of Rotationally Symmetric Plates and Shells , 1963 .

[14]  Y. J. Huang,et al.  Prediction of the fatigue threshold for a cracked body using shakedown theory , 1995 .

[15]  S. Caddemi,et al.  Shakedown problems for material models with internal variables , 1991 .

[16]  Jan A. König,et al.  A finite element formulation for shakedown problems using a yield criterion of the mean , 1976 .

[17]  Dieter Weichert,et al.  Application of shakedown theory to damaging inelastic material under mechanical and thermal loads , 1997 .

[18]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[19]  W. Shi-chun,et al.  A kinetic equation for ductile damage at large plastic strain , 1990 .

[20]  S. Karadeniz,et al.  A linear programming upper bound approach to the shakedown limit of thin shells subjected to variable thermal loading , 1984 .

[21]  P. Morelle Structural shakedown analysis by dual finite-element formulations , 1984 .

[22]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[23]  Klaus-Jürgen Bathe,et al.  SAP 4: A Structural Analysis Program for Static and Dynamic Response of Linear Systems , 1974 .

[24]  T. Charlton Progress in Solid Mechanics , 1962, Nature.

[25]  Xi-Qiao Feng,et al.  Damage and shakedown analysis of structures with strain-hardening , 1995 .

[26]  E. Stiefel Note on Jordan elimination, linear programming and Tchebycheff approximation , 1960 .