The Evolution of Flare Activity with Stellar Age

Using a recent census of flare stars from the Kepler survey, we have explored how flare activity evolves across stellar main-sequence lifetimes. We utilize a sample of 347 stars with robust flare activity detections and which have rotation periods measured via starspot modulations in their Kepler light curves. We consider three separate methods for quantifying flare activity from optical light curves and compare their utility for comparing flare activity between stars of differing ages and luminosities. These metrics include the fractional luminosity emitted in flares, the specific rate of flares emitted at a given energy, and a model for the entire flare frequency distribution (FFD). With all three approaches, we find that flare activity decreases for all low-mass stars as they spin down, and thus with age. Most striking is the evolution of the flare occurrence frequency distributions, which show no significant change in the power-law slope with age. Since our sample is preferentially constructed of younger, more active stars, our model overpredicts the superflare rate previously estimated for the Sun. Finally, we parameterize our best-fit model of the FFD for ease in predicting the rates of flares and their associated impacts on planet habitability and detection.

[1]  K. Covey,et al.  Flare Activity of Wide Binary Stars with Kepler , 2017, 1712.04570.

[2]  X. Fang,et al.  The Flaring Activity of M Dwarfs in the Kepler Field , 2017 .

[3]  J. Davenport Infrared Flares from M Dwarfs: A Hinderance to Future Transiting Exoplanet Studies , 2017, 1710.09468.

[4]  J. Debosscher,et al.  Stellar Flares Observed in Long-cadence Data from the Kepler Mission , 2017, 1711.02587.

[5]  John C. Lurie,et al.  Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries , 2017, 1710.07339.

[6]  V. Hansteen,et al.  Bombs and Flares at the Surface and Lower Atmosphere of the Sun , 2017, 1704.02872.

[7]  K. Covey,et al.  CHROMOSPHERIC AND CORONAL ACTIVITY IN THE 500 MYR OLD OPEN CLUSTER M37: EVIDENCE FOR CORONAL STRIPPING? , 2016, 1611.09313.

[8]  K. Covey,et al.  Rotating Stars from Kepler Observed with Gaia DR2 , 2016, The Astrophysical Journal.

[9]  J. Davenport,et al.  No Conclusive Evidence for Transits of Proxima b in MOST Photometry , 2016, 1609.08718.

[10]  J. Davenport THE KEPLER CATALOG OF STELLAR FLARES , 2016, 1607.03494.

[11]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[12]  K. Covey,et al.  K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY , 2016, 1603.00419.

[13]  M. Pinsonneault,et al.  Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars , 2016, Nature.

[14]  Kolby L. Weisenburger,et al.  AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS , 2015, 1509.01590.

[15]  Kazunari Shibata,et al.  Statistical properties of superflares on solar-type stars based on 1-min cadence data , 2015, Earth, Planets and Space.

[16]  M. Gudel,et al.  Stellar winds on the main-sequence - II. The evolution of rotation and winds , 2015, 1503.07494.

[17]  R. Angus,et al.  Calibrating gyrochronology using Kepler asteroseismic targets , 2015, 1502.06965.

[18]  J. Fortney,et al.  Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. , 2015, Astrobiology.

[19]  John C. Lurie,et al.  KEPLER FLARES III: STELLAR ACTIVITY ON GJ 1245A AND B , 2014, 1412.6109.

[20]  Leslie Hebb,et al.  KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243 , 2014, 1411.3723.

[21]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[22]  J. Bochanski,et al.  THE FACTORY AND THE BEEHIVE. II. ACTIVITY AND ROTATION IN PRAESEPE AND THE HYADES , 2014, 1409.7603.

[23]  Evgenya L. Shkolnik,et al.  HAZMAT. I. THE EVOLUTION OF FAR-UV AND NEAR-UV EMISSION FROM EARLY M STARS , 2014, 1407.1344.

[24]  H. Maehara,et al.  SUPERFLARE OCCURRENCE AND ENERGIES ON G-, K-, AND M-TYPE DWARFS , 2014, 1405.1453.

[25]  A. C. Cameron,et al.  Stellar magnetism: empirical trends with age and rotation , 2014, 1404.2733.

[26]  Ž. Ivezić,et al.  The SDSS–2MASS–WISE 10-dimensional stellar colour locus , 2014, 1403.1875.

[27]  T. Mazeh,et al.  ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE , 2014, 1402.5694.

[28]  E. Berger,et al.  KEPLER MONITORING OF AN L DWARF I. THE PHOTOMETRIC PERIOD AND WHITE LIGHT FLARES , 2013, 1310.5940.

[29]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.

[30]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[31]  J. Davenport,et al.  TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.

[32]  J. G. Doyle,et al.  Short-duration high-amplitude flares detected on the M dwarf star KIC 5474065 , 2013, 1306.5938.

[33]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[34]  L. Balona Kepler observations of flaring in A-F type stars , 2012 .

[35]  S. Hawley,et al.  MOST Observations of the Flare Star AD Leo , 2012, 1206.5019.

[36]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[37]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[38]  S. Hawley,et al.  The Multiple Continuum Components in the White-Light Flare of 16 January 2009 on the dM4.5e Star YZ CMi , 2011, 1109.0837.

[39]  K. Stassun,et al.  THE COLOR–PERIOD DIAGRAM AND STELLAR ROTATIONAL EVOLUTION—NEW ROTATION PERIOD MEASUREMENTS IN THE OPEN CLUSTER M34 , 2011, 1103.5171.

[40]  Andrew A. West,et al.  M DWARF FLARES FROM TIME-RESOLVED SLOAN DIGITAL SKY SURVEY SPECTRA , 2010 .

[41]  L. Walkowicz,et al.  WHITE-LIGHT FLARES ON COOL STARS IN THE KEPLER QUARTER 1 DATA , 2010, 1008.0853.

[42]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[43]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[44]  J. Bochanski,et al.  M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS , 2009, 0906.2030.

[45]  S. Hawley,et al.  M Dwarf Flares from Time‐Resolved SDSS Spectra , 2009, 1009.1158.

[46]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[47]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[48]  Andrew A. West,et al.  Stellar SEDs from 0.3 to 2.5 μm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS , 2007, 0707.4473.

[49]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[50]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[51]  Andrew A. West,et al.  The χ Factor: Determining the Strength of Activity in Low‐Mass Dwarfs , 2004, astro-ph/0410422.

[52]  W. Otruba,et al.  Temporal aspects and frequency distributions of solar soft X-ray flares , 2002, astro-ph/0207234.

[53]  S. Hawley,et al.  The Great Flare of 1985 April 12 on AD Leonis , 1991 .

[54]  A. Skumanich Some evidence on the evolution of the flare mechanism in dwarf stars , 1986 .

[55]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[56]  Leon Golub,et al.  Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity , 1981 .

[57]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[58]  J. Davenport ROTATING STARS FROM KEPLER OBSERVED WITH GAIA DR1 , 2017 .

[59]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[60]  T. Moffett,et al.  UV Ceti stars: statistical analysis of observational data. , 1976 .

[61]  L. Mirzoyan,et al.  Flare Stars in Star Clusters and Associations , 1975 .

[62]  W. Kunkel Solar Neighborhood Flare Stars – a Review , 1975 .

[63]  E. Chavira,et al.  Flare stars in stellar aggregates of different ages , 1966 .