Explaining Gabriel–Zisman Localization to the Computer

We explain a computer formulation of Gabriel–Zisman’s localization of categories in the proof assistant Coq. This includes the general localization construction with the proof of Lemma 1.2 of Gabriel and Zisman, as well as the construction using calculus of fractions.

[1]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[2]  Peter Aczel,et al.  On Relating Type Theories and Set Theories , 1998, TYPES.

[3]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  Nicolae Popescu,et al.  Abelian categories with applications to rings and modules , 1973 .

[5]  R. Hartshorne Residues And Duality , 1966 .

[6]  Benjamin Werner,et al.  FORMALIZED PROOF, COMPUTATION, AND THE CONSTRUCTION PROBLEM IN ALGEBRAIC GEOMETRY , 2005 .

[7]  Dorette A. Pronk,et al.  Etendues and stacks as bicategories of fractions , 1996 .

[8]  Lawrence C. Paulson,et al.  Mechanizing set theory , 1996, Journal of Automated Reasoning.

[9]  William Pugh,et al.  The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[10]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[11]  Jean-Pierre Serre,et al.  Groupes d'homotopie et classes des groupes abeliens , 1953 .

[12]  M. Maggesi,et al.  Information technology implications for mathematics: a view from the French riviera , 2004 .

[13]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[14]  Ronald Brown Groupoids and Van Kampen's Theorem , 1967 .

[15]  Michael J. C. Gordon,et al.  Merging HOL with Set Theory - preliminary experiments , 1994 .

[16]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[17]  C. Simpson Set-theoretical mathematics in Coq , 2004, math/0402336.

[18]  Krzysztof Grabczewski,et al.  Mechanizing Set Theory: Cardinal Arithmetic and the Axiom of Choice , 2001, ArXiv.

[19]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[20]  Georges Maltsiniotis,et al.  La théorie de l'homotopie de grothendieck , 2005 .

[21]  Benjamin Werner,et al.  Sets in Types, Types in Sets , 1997, TACS.

[22]  Jean Benabou Some geometric aspects of the calculus of fractions , 1996, Appl. Categorical Struct..

[23]  Stephen Lack,et al.  Coinverters and categories of fractions for categories with structure , 1993, Appl. Categorical Struct..

[24]  Gérard P. Huet,et al.  Constructive category theory , 2000, Proof, Language, and Interaction.

[25]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[26]  J. Verdier,et al.  Des catégories dérivées des catégories abéliennes , 1996 .

[27]  HuetGérard Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980 .

[28]  R. Hartshorne Residues and Duality: Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963 /64 , 1966 .

[29]  Leslie Lamport,et al.  Should your specification language be typed , 1999, TOPL.

[30]  Benjamin Werner,et al.  The Not So Simple Proof-Irrelevant Model of CC , 2002, TYPES.

[31]  Sten Agerholm,et al.  Experiments with ZF Set Theory in HOL and Isabelle , 1995 .

[32]  Carlos T. Simpson Computer Theorem Proving in Mathematics , 2004 .

[33]  Georges Gonthier A computer-checked proof of the Four Colour Theorem , 2005 .

[34]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[35]  Denis-Charles Cisinski,et al.  Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .

[36]  L. Illusie Complexe cotangent et déformations II , 1971 .