Explaining Gabriel–Zisman Localization to the Computer
暂无分享,去创建一个
[1] A. Grothendieck,et al. Théorie des Topos et Cohomologie Etale des Schémas , 1972 .
[2] Peter Aczel,et al. On Relating Type Theories and Set Theories , 1998, TYPES.
[3] Gerard Huet,et al. Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[4] Nicolae Popescu,et al. Abelian categories with applications to rings and modules , 1973 .
[5] R. Hartshorne. Residues And Duality , 1966 .
[6] Benjamin Werner,et al. FORMALIZED PROOF, COMPUTATION, AND THE CONSTRUCTION PROBLEM IN ALGEBRAIC GEOMETRY , 2005 .
[7] Dorette A. Pronk,et al. Etendues and stacks as bicategories of fractions , 1996 .
[8] Lawrence C. Paulson,et al. Mechanizing set theory , 1996, Journal of Automated Reasoning.
[9] William Pugh,et al. The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).
[10] Gérard P. Huet,et al. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.
[11] Jean-Pierre Serre,et al. Groupes d'homotopie et classes des groupes abeliens , 1953 .
[12] M. Maggesi,et al. Information technology implications for mathematics: a view from the French riviera , 2004 .
[13] M. Newman. On Theories with a Combinatorial Definition of "Equivalence" , 1942 .
[14] Ronald Brown. Groupoids and Van Kampen's Theorem , 1967 .
[15] Michael J. C. Gordon,et al. Merging HOL with Set Theory - preliminary experiments , 1994 .
[16] Donald Yau,et al. Categories , 2021, 2-Dimensional Categories.
[17] C. Simpson. Set-theoretical mathematics in Coq , 2004, math/0402336.
[18] Krzysztof Grabczewski,et al. Mechanizing Set Theory: Cardinal Arithmetic and the Axiom of Choice , 2001, ArXiv.
[19] Alexander Grothendieck,et al. Sur quelques points d'algèbre homologique, I , 1957 .
[20] Georges Maltsiniotis,et al. La théorie de l'homotopie de grothendieck , 2005 .
[21] Benjamin Werner,et al. Sets in Types, Types in Sets , 1997, TACS.
[22] Jean Benabou. Some geometric aspects of the calculus of fractions , 1996, Appl. Categorical Struct..
[23] Stephen Lack,et al. Coinverters and categories of fractions for categories with structure , 1993, Appl. Categorical Struct..
[24] Gérard P. Huet,et al. Constructive category theory , 2000, Proof, Language, and Interaction.
[25] Sally Popkorn,et al. A Handbook of Categorical Algebra , 2009 .
[26] J. Verdier,et al. Des catégories dérivées des catégories abéliennes , 1996 .
[27] HuetGérard. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980 .
[28] R. Hartshorne. Residues and Duality: Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963 /64 , 1966 .
[29] Leslie Lamport,et al. Should your specification language be typed , 1999, TOPL.
[30] Benjamin Werner,et al. The Not So Simple Proof-Irrelevant Model of CC , 2002, TYPES.
[31] Sten Agerholm,et al. Experiments with ZF Set Theory in HOL and Isabelle , 1995 .
[32] Carlos T. Simpson. Computer Theorem Proving in Mathematics , 2004 .
[33] Georges Gonthier. A computer-checked proof of the Four Colour Theorem , 2005 .
[34] Peter Gabriel,et al. Calculus of Fractions and Homotopy Theory , 1967 .
[35] Denis-Charles Cisinski,et al. Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .
[36] L. Illusie. Complexe cotangent et déformations II , 1971 .