Anatomy of the giant component: The strictly supercritical regime

In a recent work of the authors and Kim, we derived a complete description of the largest component of the Erdos-Renyi random graph G(n,p) as it emerges from the critical window, i.e. for p=(1+@e)/n where @e^3n->~ and @e=o(1), in terms of a tractable contiguous model. Here we provide the analogous description for the supercritical giant component, i.e. the largest component of G(n,p) for p=@l/n where @l>1 is fixed. The contiguous model is roughly as follows. Take a random degree sequence and sample a random multigraph with these degrees to arrive at the kernel; replace the edges by paths whose lengths are i.i.d. geometric variables to arrive at the 2-core; attach i.i.d. Poisson-Galton-Watson trees to the vertices for the final giant component. As in the case of the emerging giant, we obtain this result via a sequence of contiguity arguments at the heart of which are Kim's Poisson-cloning method and the Pittel-Wormald local limit theorems.

[1]  N. Wormald,et al.  Models of the , 2010 .

[2]  Yuval Peres,et al.  Anatomy of a young giant component in the random graph , 2009, Random Struct. Algorithms.

[3]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[4]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[5]  Nicholas C. Wormald,et al.  The mixing time of the giant component of a random graph , 2006, Random Struct. Algorithms.

[6]  Epsrc Nserc Critical random graphs: limiting constructions and distributional properties , 2010 .

[7]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graph , 2004 .

[8]  Jeong Han Kim,et al.  Finding cores of random 2-SAT formulae via Poisson cloning , 2008, ArXiv.

[9]  Yuval Peres,et al.  Diameters in Supercritical Random Graphs Via First Passage Percolation , 2009, Combinatorics, Probability and Computing.

[10]  Y. Peres,et al.  Mixing time of near-critical random graphs , 2009, 0908.3870.

[11]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[12]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[13]  Béla Bollobás,et al.  Random Graphs , 1985 .

[14]  Jim Pitman,et al.  Tree-valued Markov chains derived from Galton-Watson processes , 1998 .

[15]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[16]  Tomasz Łuczak Component behavior near the critical point of the random graph process , 1990 .

[17]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[18]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[19]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[20]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[21]  Nicholas C. Wormald,et al.  The Diameter of Sparse Random Graphs , 2010, Comb. Probab. Comput..

[22]  Tomasz Luczak,et al.  Cycles in a Random Graph Near the Critical Point , 1991, Random Struct. Algorithms.

[23]  R. Durrett Probability: Theory and Examples , 1993 .

[24]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[25]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .