High-Energy Passive Mode-Locking of Fiber Lasers.

Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings.

[1]  Jose Nathan Kutz,et al.  Geometrical description of the onset of multi-pulsing in mode-locked laser cavities , 2010 .

[2]  P. Grelu,et al.  Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Variational method for mode-locked lasers , 2008 .

[4]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[5]  Nail Akhmediev,et al.  Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion , 1997 .

[6]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[7]  F. Wise,et al.  High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. , 2002, Optics letters.

[8]  Nail Akhmediev,et al.  Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation , 1996 .

[9]  Curtis R. Menyuk,et al.  Pulse propagation in an elliptically birefringent Kerr medium , 1989 .

[10]  Qirong Xing,et al.  Regular, period-doubling, quasi-periodic, and chaotic behavior in a self-mode-locked Ti:sapphire laser , 1999 .

[11]  H. Tam,et al.  Observation of bound states of solitons in a passively mode-locked fiber laser , 2001 .

[12]  J Nathan Kutz,et al.  Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays. , 2005, Optics express.

[13]  Philippe Grelu,et al.  Dissipative soliton resonance in a passively mode-locked fiber laser. , 2011, Optics letters.

[14]  W. S. Man,et al.  Stimulated soliton pulse formation and its mechanism in a passively mode-locked fibre soliton laser , 1999 .

[15]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[16]  K. Loh,et al.  Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser , 2010, 1003.0154.

[17]  J. Kutz,et al.  Stability of mode-locked pulse solutions subject to saturable gain: computing linear stability with the Floquet-Fourier-Hill method , 2010 .

[18]  Mohamed Salhi,et al.  Theoretical study of the stretched-pulse erbium-doped fiber laser , 2003 .

[19]  Ammar Hideur,et al.  Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser , 2002, nlin/0410025.

[20]  Frank W. Wise,et al.  Transition Dynamics for Multi-Pulsing in Mode-Locked Lasers , 2010 .

[21]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[22]  A. Komarov,et al.  Quintic complex Ginzburg-Landau model for ring fiber lasers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G. S. McDonald,et al.  Self-sustained mode locking using induced nonlinear birefringence in optical fibre , 1993 .

[24]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. , 2007, Optics letters.

[25]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[26]  Nail Akhmediev,et al.  Roadmap to ultra-short record high-energy pulses out of laser oscillators , 2008 .

[27]  J. Nathan Kutz,et al.  Mode-Locked Soliton Lasers , 2006, SIAM Rev..

[28]  Shu Namiki,et al.  Energy rate equations for mode-locked lasers , 1997 .

[29]  Keren Bergman,et al.  Polarization-locked temporal vector solitons in a fiber laser: experiment , 2000 .

[30]  D. Tang,et al.  Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers , 2005, 0910.5810.

[31]  J. Proctor,et al.  Passive mode-locking by use of waveguide arrays. , 2005, Optics letters.

[32]  Eli Shlizerman,et al.  Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition , 2010 .

[33]  M. W. Phillips,et al.  SELFSTARTING, PASSIVELY MODELOCKED ERBIUM FIBRE RING LASER BASED ON THE AMPLIFYING SAGNAC SWITCH , 1991 .

[34]  Ferenc Krausz,et al.  Generation of sub-20 fs mode-locked pulses from Ti:sapphire laser , 1992 .

[35]  C. Christov,et al.  Dissipative solitons , 1995 .

[36]  Todd Kapitula,et al.  Stability of pulses in the master mode-locking equation , 2002 .

[37]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[38]  C. Menyuk Nonlinear pulse propagation in birefringent optical fibers , 1987 .

[39]  P. Grelu,et al.  Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators , 2010 .

[40]  James G. Fujimoto,et al.  Analytic theory of additive pulse and Kerr lens mode locking , 1992 .

[41]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  M. Fermann,et al.  Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. , 1993, Optics letters.

[43]  Hermann A. Haus,et al.  Additive-pulse modelocking in fiber lasers , 1994 .

[44]  Todd Kapitula,et al.  The Evans function for nonlocal equations , 2004 .

[45]  François Sanchez,et al.  Multistability and hysteresis phenomena in passively mode-locked fiber lasers , 2005 .

[46]  H. Haus,et al.  Self-starting additive pulse mode-locked erbium fibre ring laser , 1992 .

[47]  I. Duling Subpicosecond all-fibre erbium laser , 1991 .

[48]  Irl N. Duling,et al.  Compact Sources of Ultrashort Pulses , 1995 .

[49]  J. Nathan Kutz,et al.  Operating regimes, split-step modeling, and the Haus master mode-locking model , 2009 .

[50]  Eli Shlizerman,et al.  Generalized Master Equation for High-Energy Passive Mode-Locking: The Sinusoidal Ginzburg–Landau Equation , 2011, IEEE Journal of Quantum Electronics.

[51]  J. Kutz,et al.  Theory and simulation of passive modelocking dynamics using a long-period fiber grating , 2003 .

[52]  M. Dennis,et al.  High repetition rate figure eight laser with extracavity feedback , 1992 .

[53]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .