60  dB high-extinction auto-configured Mach-Zehnder interferometer.

Imperfections in integrated photonics manufacturing have a detrimental effect on the maximal achievable visibility in interferometric architectures. These limits have profound implications for further technological developments in photonics and in particular for quantum photonic technologies. Active optimization approaches, together with reconfigurable photonics, have been proposed as a solution to overcome this. In this Letter, we demonstrate an ultrahigh (>60  dB) extinction ratio in a silicon photonic device consisting of cascaded Mach-Zehnder interferometers, in which additional interferometers function as variable beamsplitters. The imperfections of fabricated beamsplitters are compensated using an automated progressive optimization algorithm with no requirement for pre-calibration. This work shows the possibility of integrating and accurately controlling linear-optical components for large-scale quantum information processing and other applications.

[1]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[4]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[5]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[6]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[7]  M.A. Cappuzzo,et al.  Integrated all-pass filters for tunable dispersion and dispersion slope compensation , 1999, IEEE Photonics Technology Letters.

[8]  Michael G. Tanner,et al.  Quantum Photonic Interconnect , 2015, 1508.03214.

[9]  R. Ho,et al.  Energy-Efficient Photonics in Future High-Connectivity Computing Systems , 2015, Journal of Lightwave Technology.

[10]  Ken Tanizawa,et al.  Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch. , 2014, Optics express.

[11]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[12]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[13]  Eiichi Sato,et al.  Zero-dark-counting high-speed X-ray photon detection using a cerium-doped yttrium aluminum perovskite crystal and a small photomultiplier tube and its application to gadolinium imaging , 2014 .

[14]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[17]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[18]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[19]  E. Andrade Contemporary Physics , 1945, Nature.

[20]  Zach DeVito,et al.  Opt , 2017 .

[21]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[22]  F. Horst,et al.  Adaptive gain equalizer in high-index-contrast SiON technology , 2000, IEEE Photonics Technology Letters.

[23]  D. Taillaert,et al.  A compact two-dimensional grating coupler used as a polarization splitter , 2003, IEEE Photonics Technology Letters.

[24]  C. M. Natarajan,et al.  Chip-based quantum key distribution , 2015, Nature Communications.

[25]  Chao Li,et al.  A Library of Ultra-Compact Multimode Interference Optical Couplers on SOI , 2013, IEEE Photonics Technology Letters.

[26]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[27]  Ken Tanizawa,et al.  Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. , 2015, Optics express.

[28]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[29]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[30]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[31]  Photon , 2017, Radiopaedia.org.

[32]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[33]  Jeremy L O'Brien,et al.  Chip-to-chip quantum photonic interconnect by path-polarization interconversion , 2016 .