Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach

This paper considers forecast combination with factor-augmented regression. In this framework, a large number of forecasting models are available, varying by the choice of factors and the number of lags. We investigate forecast combination using weights that minimize the Mallows and the leave-h-out cross validation criteria. The unobserved factor regressors are estimated by principle components of a large panel with N predictors over T periods. With these generated regressors, we show that the Mallows and leave-h-out cross validation criteria are approximately unbiased estimators of the one-step-ahead and multi-step-ahead mean squared forecast errors, respectively, provided that N, T —› ∞. In contrast to well-known results in the literature, the generated-regressor issue can be ignored for forecast combination, without restrictions on the relation between N and T. Simulations show that the Mallows model averaging and leave-h-out cross-validation averaging methods yield lower mean squared forecast errors than alternative model selection and averaging methods such as AIC, BIC, cross validation, and Bayesian model averaging. We apply the proposed methods to the U.S. macroeconomic data set in Stock and Watson (2012) and find that they compare favorably to many popular shrinkage-type forecasting methods.

[1]  L. Hansen,et al.  Uncertainty Outside and Inside Economic Models , 2014 .

[2]  Bryan T. Kelly,et al.  The Three-Pass Regression Filter: A New Approach to Forecasting Using Many Predictors , 2014 .

[3]  T. Sargent,et al.  Recursive Models of Dynamic Linear Economies , 2013 .

[4]  Allan Timmermann,et al.  Complete subset regressions , 2013 .

[5]  S. Kates Defending the History of Economic Thought , 2013 .

[6]  Linda Eells Minnesota Applied Economist 723, Fall 2013 , 2013 .

[7]  S. Kates Why study the history of economic thought , 2013 .

[8]  Benjamin C. Hansen,et al.  Economic Conditions and Child Abuse , 2013, SSRN Electronic Journal.

[9]  Chirok Han,et al.  DEPENDENCE OF ECONOMIC GROWTH ON CO2 EMISSIONS , 2013 .

[10]  E. Schaumburg,et al.  Robust Forecasting by Regularization , 2013 .

[11]  Serena Ng,et al.  Variable Selection in Predictive Regressions , 2013 .

[12]  Iiboshi Hirokuni Measuring the Effects of Monetary Policy: A DSGE-DFM Approach , 2012 .

[13]  Mark W. Watson,et al.  Generalized Shrinkage Methods for Forecasting Using Many Predictors , 2012 .

[14]  Alexei Onatski,et al.  Asymptotics of the principal components estimator of large factor models with weakly influential factors , 2012 .

[15]  Sı́lvia Gonçalves,et al.  Bootstrapping Factor-Augmented Regression Models , 2012 .

[16]  K. Sen The Political Dynamics of Economic Growth , 2012 .

[17]  Jeffrey S. Racine,et al.  Jackknife model averaging , 2012 .

[18]  Catherine Doz,et al.  A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models , 2006, Review of Economics and Statistics.

[19]  J. Breitung,et al.  GLS Estimation of Dynamic Factor Models , 2011 .

[20]  In Choi,et al.  EFFICIENT ESTIMATION OF FACTOR MODELS , 2011, Econometric Theory.

[21]  Aman Ullah,et al.  Handbook of empirical economics and finance , 2010 .

[22]  Norman R. Swanson,et al.  Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence , 2010 .

[23]  M. Hashem Pesaran,et al.  Variable Selection, Estimation and Inference for Multi-Period Forecasting Problems , 2010 .

[24]  Stephen G. Engelmann Political Economy, Revisited , 2010 .

[25]  Bruce E. Hansen,et al.  Multi-Step Forecast Model Selection , 2010 .

[26]  Serena Ng,et al.  A Factor Analysis of Bond Risk Premia , 2009 .

[27]  Serena Ng,et al.  Boosting diffusion indices , 2009 .

[28]  Bruce E. Hansen,et al.  Least-squares forecast averaging , 2008 .

[29]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[30]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[31]  F. Dias,et al.  Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .

[32]  B. Hansen Least Squares Model Averaging , 2007 .

[33]  H. Leeb,et al.  CAN ONE ESTIMATE THE UNCONDITIONAL DISTRIBUTION OF POST-MODEL-SELECTION ESTIMATORS? , 2003, Econometric Theory.

[34]  Allan Timmermann,et al.  Forecast Combination With Entry and Exit of Experts , 2006 .

[35]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[36]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[37]  J. Stock,et al.  Forecasting with Many Predictors , 2006 .

[38]  L. Kilian,et al.  How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation , 2008 .

[39]  A. Timmermann Forecast Combinations , 2005 .

[40]  Lutz Kilian,et al.  How Useful is Bagging in Forecasting Economic Time Series? A Case Study of Us CPI Inflation , 2005 .

[41]  Ching-Zong Wei,et al.  Order selection for same-realization predictions in autoregressive processes , 2005, math/0602326.

[42]  Frank Schorfheide,et al.  VAR forecasting under misspecification , 2005 .

[43]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[44]  Arnold Zellner,et al.  "Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates" , 2004 .

[45]  Serena Ng,et al.  Are more data always better for factor analysis , 2006 .

[46]  N. Hjort,et al.  Frequentist Model Average Estimators , 2003 .

[47]  Anthony Garratt,et al.  Forecast Uncertainties in Macroeconomic Modeling , 2003 .

[48]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[49]  Jonathan H. Wright,et al.  Bayesian Model Averaging and Exchange Rate Forecasts , 2003 .

[50]  Jonathan H. Wright,et al.  Forecasting U.S. Inflation by Bayesian Model Averaging , 2003 .

[51]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[52]  M.,et al.  THE FINITE-SAMPLE DISTRIBUTION OF POST-MODEL-SELECTION ESTIMATORS AND UNIFORM VERSUS NONUNIFORM APPROXIMATIONS , 2003, Econometric Theory.

[53]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[54]  D. Rivers,et al.  Model Selection Tests for Nonlinear Dynamic Models , 2002 .

[55]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[56]  Michael P. Clements,et al.  Pooling of Forecasts , 2004 .

[57]  Marco Lippi,et al.  THE GENERALIZED DYNAMIC FACTOR MODEL: REPRESENTATION THEORY , 2001, Econometric Theory.

[58]  W. Brock,et al.  Growth empirics and reality , 2001 .

[59]  Doron Avramov,et al.  Stock Return Predictability and Model Uncertainty , 2001 .

[60]  M. Steel,et al.  Benchmark Priors for Bayesian Model Averaging , 2001 .

[61]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[62]  Anthony Garratt,et al.  Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy , 2000, SSRN Electronic Journal.

[63]  X. Sala-i-Martin,et al.  Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach , 2000 .

[64]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[65]  Hannes Leeb,et al.  The Finite-Sample Distribution of Post-Model-Selection Estimators, and Uniform Versus Non-Uniform Approximations , 2000 .

[66]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[67]  M. Steel,et al.  Model uncertainty in cross-country growth regressions , 2001 .

[68]  J. Stock,et al.  A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series , 1998 .

[69]  K. Burnham,et al.  Model selection: An integral part of inference , 1997 .

[70]  F. Diebold,et al.  Forecast Evaluation and Combination , 1996 .

[71]  J. Cardoso Teaching the history of economic thought , 1995 .

[72]  S. E. Din,et al.  WHAT IS ISLAMIC ECONOMICS , 1994 .

[73]  Gregory Connor,et al.  A Test for the Number of Factors in an Approximate Factor Model , 1993 .

[74]  D. Andrews,et al.  Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors , 1991 .

[75]  C. Granger Invited review combining forecasts—twenty years later , 1989 .

[76]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[77]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[78]  Muhammad Akram Khan,et al.  Methodology of Islamic Economics , 1987 .

[79]  Gregory Connor,et al.  Performance Measurement with the Arbitrage Pricing Theory: A New Framework for Analysis , 1985 .

[80]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[81]  C. Granger,et al.  Improved methods of combining forecasts , 1984 .

[82]  Adrian Pagan,et al.  Econometric Issues in the Analysis of Regressions with Generated Regressors. , 1984 .

[83]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1982 .

[84]  L. Hansen,et al.  Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis , 1980, Journal of Political Economy.

[85]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[86]  R. Shibata Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process , 1980 .

[87]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[88]  Theodore L. Shay Political Stability and Economic Development , 1974 .

[89]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[90]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[91]  C. L. Mallows Some comments on C_p , 1973 .

[92]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[93]  Frederick Mosteller,et al.  Identification and estimation. , 1955 .