Explicit formulas for two state Kalman, H/sub 2/ and H/sub /spl infin// target tracking filters
暂无分享,去创建一个
Paul R. Kalata | K. M. Murphy | P. L. Rawicz | T. A. Chmielewski | P. Kalata | T. Chmielewski | K. Murphy
[1] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[2] G. Zames,et al. On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .
[3] Paul Zarchan,et al. Comparison of Four Filtering Options for a Radar Tracking Problem , 1998 .
[4] P. Khargonekar,et al. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .
[5] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[6] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[7] B. Anderson,et al. Optimal control: linear quadratic methods , 1990 .
[8] U. Shaked,et al. H/sub infinity /-optimal estimation: a tutorial , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.
[9] David J. N. Limebeer,et al. Linear Robust Control , 1994 .
[10] T. Kailath,et al. Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .
[11] U. Shaked,et al. Design of linear tracking filters via robust H/sub 2/ optimization , 1996, IEEE Transactions on Aerospace and Electronic Systems.
[12] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .
[13] Jeffrey B. Burl,et al. Linear Optimal Control , 1998 .
[14] U. Shaked,et al. H,-OPTIMAL ESTIMATION: A TUTORIAL , 1992 .
[15] On Kalman, H/sub /spl infin// and H/sub 2/ target tracking: probability of target escape , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[16] Amir Averbuch,et al. Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .
[17] P. Kalata. The Tracking Index: A Generalized Parameter for α-β and α-β-γ Target Trackers , 1984, IEEE Transactions on Aerospace and Electronic Systems.
[18] Uri Shaked,et al. Game theory approach to finite-time horizon optimal estimation , 1993, IEEE Trans. Autom. Control..
[19] Samuel S. Blackman,et al. Design and Analysis of Modern Tracking Systems , 1999 .
[20] Eric R. Ziegel,et al. Handbook of Mathematical Sciences , 1989 .
[21] G. A. Watson,et al. IMMPDAF for radar management and tracking benchmark with ECM , 1998 .
[22] G. Zames,et al. Feedback, minimax sensitivity, and optimal robustness , 1983 .
[23] Yaakov Bar-Shalom,et al. Benchmark for radar allocation and tracking in ECM , 1998 .
[24] Michael J. Grimble. Robust filter design for uncertain systems defined by both hard and soft bounds , 1996, IEEE Trans. Signal Process..
[25] G. Zames,et al. H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .
[26] Dominick Andrisani,et al. Design of a robust estimator for target tracking , 1993 .
[27] Richard A. Brown,et al. Introduction to random signals and applied kalman filtering (3rd ed , 2012 .
[28] Paul Kalata,et al. The Tracking Index for Continuous Target Trackers , 1992, 1992 American Control Conference.
[29] P. Khargonekar,et al. Filtering and smoothing in an H/sup infinity / setting , 1991 .
[30] Tamer Başar,et al. H1-Optimal Control and Related Minimax Design Problems , 1995 .