Time-varying parameters: New test tailored to applications in finance and macroeconomics

Many economic theories imply a linear relationship with constant parameters between financial or macroeconomic variables. While the linear model with constant parameters is often disputed in the literature, this model specification is rarely tested. This paper proposes a new and intuitively appealing test for model specification tailored for applications in finance and macroeconomics. Importantly, the test allows for autocorrelation, which is often present in these applications. We demonstrate impressive properties of the test in a realistic simulation study and obtain important insights from empirical applications.

[1]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[2]  Timo Teräsvirta,et al.  Testing the constancy of regression parameters against continuous structural change , 1994 .

[3]  Allan Timmermann,et al.  Instability of Return Prediction Models , 2005 .

[4]  P. Robinson,et al.  Time-Varying Nonlinear Regression , 1991 .

[5]  A. Timmermann,et al.  Market timing and return prediction under model instability , 2002 .

[6]  James L. Davis The Cross-Section of Realized Stock Returns: The Pre- Compustat Evidence , 1994 .

[7]  Eva Ferreira,et al.  Nonparametric estimation of time varying parameters under shape restrictions , 2005 .

[8]  Zongwu Cai,et al.  Trending time-varying coefficient time series models with serially correlated errors , 2007 .

[9]  T. Teräsvirta,et al.  The shifting seasonal mean autoregressive model and seasonality in the Central England monthly temperature series, 1772–2016 , 2019, Econometrics and Statistics.

[10]  Stijn Van Nieuwerburgh,et al.  Reconciling the Return Predictability Evidence , 2006 .

[11]  James L. Davis,et al.  Characteristics, Covariances, and Average Returns: 1929-1997 , 1999 .

[12]  J. Grammig,et al.  Discretion versus Policy Rules in Practice , 2007 .

[13]  Lawrence J. Christiano,et al.  Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy , 2005 .

[14]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[15]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[16]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[17]  F. Smets,et al.  Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach , 2007 .

[18]  P. Robinson,et al.  Nonparametric Estimation of Time-Varying Parameters , 1989 .

[19]  Joseph Chen,et al.  CAPM Over the Long-Run: 1926-2001 , 2003 .

[20]  Nicholas G. Polson,et al.  Sequential Learning, Predictability, and Optimal Portfolio Returns , 2013 .

[21]  Jeffrey S. Racine,et al.  CROSS-VALIDATED LOCAL LINEAR NONPARAMETRIC REGRESSION , 2004 .

[22]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[23]  J. Galí,et al.  Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory , 1998 .

[24]  Andrew J. Patton,et al.  Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts , 2010 .

[25]  Andrew J. Patton,et al.  Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White , 2009 .

[26]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[27]  Andrew Ang,et al.  A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables , 2003 .

[28]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[29]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[30]  Jeffrey S. Racine,et al.  Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints , 2012 .

[31]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[32]  Bin Chen,et al.  Testing for Smooth Structural Changes in Time Series Models via Nonparametric Regression , 2012 .

[33]  H. White,et al.  Automatic Block-Length Selection for the Dependent Bootstrap , 2004 .

[34]  Pierre Perron,et al.  Dealing with Structural Breaks , 2005 .

[35]  Graham Elliott,et al.  Efficient Tests for General Persistent Time Variation in Regression Coefficients , 2006 .

[36]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[37]  C. Loader Bandwidth selection: classical or plug-in? , 1999 .

[38]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[39]  Juan M. Rodríguez-Póo,et al.  A nonparametric method to estimate time varying coefficients under seasonal constraints , 2000 .

[40]  Wenceslao González Manteiga,et al.  Significance testing in nonparametric regression based on the bootstrap , 2001 .

[41]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[42]  M. Halling,et al.  Predictive Regressions with Time-Varying Coefficients , 2008 .

[43]  Hui Guo,et al.  Time-Varying Beta and the Value Premium , 2017, Journal of Financial and Quantitative Analysis.