Unconventional valley-dependent optical selection rules and landau level mixing in bilayer graphene

[1]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[2]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[3]  P. Kim,et al.  Spin-polarized correlated insulator and superconductor in twisted double bilayer graphene. , 2019, 1903.08130.

[4]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[5]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[6]  S. Louie,et al.  Tunable excitons in bilayer graphene , 2017, Science.

[7]  Di Xiao,et al.  Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems. , 2017, Physical review letters.

[8]  Xiaodong Xu,et al.  Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor. , 2017, Physical review letters.

[9]  T. Taniguchi,et al.  Many-Particle Effects in the Cyclotron Resonance of Encapsulated Monolayer Graphene. , 2017, Physical review letters.

[10]  S. Louie,et al.  Unifying Optical Selection Rules for Excitons in Two Dimensions: Band Topology and Winding Numbers. , 2017, Physical review letters.

[11]  J. Shan,et al.  Valley- and spin-polarized Landau levels in monolayer WSe2. , 2017, Nature nanotechnology.

[12]  Zhiwen Shi,et al.  Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures , 2014, Nature Communications.

[13]  T. Ihn,et al.  Anomalous sequence of quantum Hall liquids revealing a tunable Lifshitz transition in bilayer graphene. , 2014, Physical review letters.

[14]  F. Teppe,et al.  Observation of three-dimensional massless Kane fermions in a zinc-blende crystal , 2014, Nature Physics.

[15]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[16]  A. Mirlin,et al.  Quantum magneto-oscillations in the ac conductivity of disordered graphene , 2013, 1301.7246.

[17]  C. Tőke,et al.  Theory of inter-Landau level magnetoexcitons in bilayer graphene , 2012, 1209.0638.

[18]  Yoichi Ando,et al.  Landau level spectroscopy of surface states in the topological insulator Bi 0.91 Sb 0.09 via magneto-optics , 2012 .

[19]  A. Nicolet,et al.  Polarization-resolved magneto-Raman scattering of graphenelike domains on natural graphite , 2012, 1203.1847.

[20]  Amir Yacoby,et al.  Unconventional Sequence of Fractional Quantum Hall States in Suspended Graphene , 2012, Science.

[21]  K. Shepard,et al.  Spin and valley quantum Hall ferromagnetism in graphene , 2012, Nature Physics.

[22]  X. Hong,et al.  Electron-Hole Asymmetry and Electron-Electron Interaction in Bilayer Graphene , 2011 .

[23]  X. Hong,et al.  Electron-electron interaction and electron-hole asymmetry in bilayer graphene (Supporting Materials) , 2011, 1103.1663.

[24]  C. Berger,et al.  Bilayer graphene inclusions in rotational-stacked multilayer epitaxial graphene , 2010, 1010.1767.

[25]  Michael J. Lawler,et al.  Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.

[26]  W. D. de Heer,et al.  Observing the Quantization of Zero Mass Carriers in Graphene , 2009, Science.

[27]  P. Kim,et al.  Cyclotron resonance in bilayer graphene. , 2008, Physical review letters.

[28]  K. Novoselov,et al.  Cyclotron resonance study of the electron and hole velocity in graphene monolayers , 2007, 0704.0410.

[29]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical review letters.

[30]  V. Fal’ko,et al.  Optical and magneto-optical far-infrared properties of bilayer graphene. , 2006, cond-mat/0610673.

[31]  V. Gusynin,et al.  Anomalous absorption line in the magneto-optical response of graphene. , 2006, Physical review letters.

[32]  C. Berger,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.

[33]  A. Geim,et al.  Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene , 2006, cond-mat/0602565.

[34]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[35]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[36]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[37]  Jones,et al.  Breaking of the usual selection rule for magnetoluminescence in doped semiconductor quantum wells. , 1988, Physical review letters.

[38]  MacDonald,et al.  Magneto-roton theory of collective excitations in the fractional quantum Hall effect. , 1986, Physical review. B, Condensed matter.

[39]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[40]  R. E. Doezema,et al.  Far-infrared magnetospectroscopy of the Landau-level structure in graphite , 1979 .

[41]  J. G. Mavroides,et al.  Energy band parameter determination in graphite , 1965 .

[42]  A. Messiah Quantum Mechanics , 1961 .