Relationship between UCHT and FFT

This paper presents relationships among unified complex Hadamard transform (UCHT) whose transformation matrix contains elements /spl plusmn/1 and /spl plusmn/i, Walsh-Hadamard transform (WHT) whose transformation matrix contains elements /spl plusmn/1, and Fast Fourier Transform (FFT). They are all related to each other by a key matrix, and FFT can be computed by using UCHT WHT and some twiddle factor matrices.

[1]  S. Rahardja,et al.  Comparative Study of Discrete Orthogonal Transforms in Adaptive Signal Processing (Special Section on Digital Signal Processing) , 1999 .

[2]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing , 1985 .

[3]  Maher A. Sid-Ahmed,et al.  Image processing, theory, algorithms and architectures , 1995 .

[4]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[5]  S. Rahardja,et al.  Family of unified complex Hadamard transforms , 1999 .

[6]  Andreas Antoniou,et al.  Digital Filters: Analysis, Design and Applications , 1979 .

[7]  R. Yarlagadda,et al.  Hadamard matrix analysis and synthesis: with applications to communications and signal/image processing , 1996 .

[8]  L. P. I︠A︡roslavskiĭ Digital picture processing : an introduction , 1985 .

[9]  Tim Morris,et al.  Computer Vision and Image Processing: 4th International Conference, CVIP 2019, Jaipur, India, September 27–29, 2019, Revised Selected Papers, Part I , 2020, CVIP.

[10]  C. Moraga Introducing disjoint spectral translation in spectral multiple-valued logic design , 1978 .

[11]  Bogdan J. Falkowski,et al.  Symmetry conditions of Boolean functions in complex Hadamard transform , 1998 .

[12]  J. Vaisey,et al.  Comparison of image transforms in the coding of the displaced frame difference for block-based motion compensation , 1993, Proceedings of Canadian Conference on Electrical and Computer Engineering.

[13]  C. Moraga Characterisation of ternary threshold functions using a partial spectrum , 1979 .

[14]  A. Street,et al.  Combinatorics: room squares, sum-free sets, Hadamard matrices , 1972 .

[15]  Susanto Rahardja,et al.  Classifications and graph-based representations of switching functions using a novel complex spectral technique , 1997 .

[16]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Parameter spectrum in spectral multiple-valued logic design , 1983 .

[18]  S. Rahardja,et al.  Complex composite spectra of Unified Complex Hadamard transform for logic functions , 2000 .

[19]  Bogdan J. Falkowski,et al.  Complex decision diagrams , 1996 .

[20]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man and Cybernetics.