The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC

[1]  Kangseok Lee,et al.  Membrane Fusion Proteins of Type I Secretion System and Tripartite Efflux Pumps Share a Binding Motif for TolC in Gram-Negative Bacteria , 2012, PloS one.

[2]  A. Moeller,et al.  Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria* , 2012, The Journal of Biological Chemistry.

[3]  H. Zgurskaya,et al.  Mechanism and Function of the Outer Membrane Channel TolC in Multidrug Resistance and Physiology of Enterobacteria , 2011, Front. Microbio..

[4]  A. Moeller,et al.  Funnel-like Hexameric Assembly of the Periplasmic Adapter Protein in the Tripartite Multidrug Efflux Pump in Gram-negative Bacteria* , 2011, The Journal of Biological Chemistry.

[5]  Hyun-soo Cho,et al.  Functional Implications of an Intermeshing Cogwheel-like Interaction between TolC and MacA in the Action of Macrolide-specific Efflux Pump MacAB-TolC* , 2011, The Journal of Biological Chemistry.

[6]  J. Park,et al.  Complete Genome Sequence of Vibrio vulnificus MO6-24/O , 2011, Journal of bacteriology.

[7]  Kangseok Lee,et al.  Functional Relationships between the AcrA Hairpin Tip Region and the TolC Aperture Tip Region for the Formation of the Bacterial Tripartite Efflux Pump AcrAB-TolC , 2010, Journal of Bacteriology.

[8]  Kangseok Lee,et al.  The tip region of the MacA alpha-hairpin is important for the binding to TolC to the Escherichia coli MacAB-TolC pump. , 2010, Biochemical and biophysical research communications.

[9]  V. Bavro,et al.  Assembly and transport mechanism of tripartite drug efflux systems. , 2009, Biochimica et biophysica acta.

[10]  H. Zgurskaya,et al.  Structural and functional diversity of bacterial membrane fusion proteins. , 2009, Biochimica et biophysica acta.

[11]  Colin Hughes,et al.  The assembled structure of a complete tripartite bacterial multidrug efflux pump , 2009, Proceedings of the National Academy of Sciences.

[12]  Kangseok Lee,et al.  Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. , 2009, Journal of molecular biology.

[13]  C. Robinson,et al.  MacB ABC Transporter Is a Dimer Whose ATPase Activity and Macrolide-binding Capacity Are Regulated by the Membrane Fusion Protein MacA*S⃞ , 2009, Journal of Biological Chemistry.

[14]  N. Ha,et al.  Crystallization and preliminary X-ray crystallographic analysis of MacA from Actinobacillus actinomycetemcomitans. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[15]  Nicholas Furnham,et al.  Assembly and Channel Opening in a Bacterial Drug Efflux Machine , 2008, Molecular cell.

[16]  E. Bokma,et al.  A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps , 2007, Proceedings of the National Academy of Sciences.

[17]  S. Lau,et al.  Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB , 2007, Molecular microbiology.

[18]  H. Zgurskaya,et al.  Conformational flexibility in the multidrug efflux system protein AcrA. , 2006, Structure.

[19]  Hiroyoshi Matsumura,et al.  The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 Å Resolution* , 2005, Journal of Biological Chemistry.

[20]  Henri G. Gerken,et al.  Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli , 2004, Molecular microbiology.

[21]  E. Bokma,et al.  Structure of the periplasmic component of a bacterial drug efflux pump. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Tsukihara,et al.  Crystal Structure of the Membrane Fusion Protein, MexA, of the Multidrug Transporter in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[23]  J. Eswaran,et al.  Structure and function of TolC: the bacterial exit duct for proteins and drugs. , 2004, Annual review of biochemistry.

[24]  A. Yamaguchi,et al.  Membrane topology of ABC‐type macrolide antibiotic exporter MacB in Escherichia coli , 2003, FEBS letters.

[25]  A. Yamaguchi,et al.  Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli , 2001, Journal of bacteriology.

[26]  A. Yamaguchi,et al.  Novel Macrolide-Specific ABC-Type Efflux Transporter inEscherichia coli , 2001, Journal of bacteriology.

[27]  K. Lewis,et al.  Translocases: A bacterial tunnel for drugs and proteins , 2000, Current Biology.

[28]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[29]  J. Bina,et al.  Helicobacter pylori Uptake and Efflux: Basis for Intrinsic Susceptibility to Antibiotics In Vitro , 2000, Antimicrobial Agents and Chemotherapy.

[30]  H. Nikaido,et al.  Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Koronakis,et al.  Substrate‐induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner‐membrane translocase to an outer membrane exit pore , 1998, The EMBO journal.

[32]  M H Saier,et al.  A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. , 1997, FEMS microbiology letters.

[33]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[34]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[35]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[36]  J. Hearst,et al.  Genes acrA and acrB encode a stress‐induced efflux system of Escherichia coli , 1995, Molecular microbiology.

[37]  D. Heinrichs,et al.  Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine , 1993, Molecular microbiology.