Semiclassical analysis and passive imaging
暂无分享,去创建一个
[1] Jeffrey Rauch,et al. Decay of solutions to nondissipative hyperbolic systems on compact manifolds , 1975 .
[2] Francisco J. Sánchez-Sesma,et al. Elastodynamic 2D Green function retrieval from cross‐correlation: Canonical inclusion problem , 2006 .
[3] Thierry Paul,et al. Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time , 1998 .
[4] Mouez Dimassi,et al. Spectral asymptotics in the semi-classical limit , 1999 .
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] A. Paul,et al. Long-Range Correlations in the Diffuse Seismic Coda , 2003, Science.
[7] Y. D. Verdière. A semi-classical inverse problem II: reconstruction of the potential , 2008, 0802.1643.
[8] Yves Colin de Verdiere. Mathematical models for passive imaging II: Effective Hamiltonians associated to surface waves , 2006 .
[9] M. Fink,et al. How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves , 2003 .
[10] Michel Campillo,et al. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise , 2005, Science.
[11] J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifférentiel , 1993 .
[12] Norbert Wiener,et al. Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .
[13] Y. Egorov,et al. Fourier Integral Operators , 1994 .
[14] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[15] Richard L. Weaver,et al. On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons. , 2001, Ultrasonics.
[16] Michel Campillo,et al. Towards forecasting volcanic eruptions using seismic noise , 2007, 0706.1935.
[17] L. Hörmander,et al. The spectral function of an elliptic operator , 1968 .
[18] M. Dimassi,et al. Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .
[19] Francisco J. Sánchez-Sesma,et al. Cross‐correlation of random fields: mathematical approach and applications , 2008 .
[20] J. Harvey,et al. Time–distance helioseismology , 1993, Nature.
[21] Semiclassical Behaviour of Expectation Values in Time Evolved Lagrangian States for Large Times , 2004, math/0402038.
[22] R. Weaver,et al. On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons. , 2001, Ultrasonics.
[23] Josselin Garnier,et al. Identification of Green's functions singularities by cross correlation of noisy signals , 2008 .
[24] Yuri Safarov,et al. SPECTRAL ASYMPTOTICS IN THE SEMI‐CLASSICAL LIMIT (London Mathematical Society Lecture Note Series 268) , 2000 .
[25] R. Weaver,et al. Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. , 2001, Physical review letters.
[26] Michel Campillo,et al. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise , 2004 .
[27] Geometry of the transport equation in multicomponent WKB approximations , 1994, hep-th/9412148.
[28] Richard L. Weaver,et al. Information from Seismic Noise , 2005, Science.
[29] Richard L. Weaver,et al. Diffuse fields in open systems and the emergence of the Green’s function (L) , 2004 .
[30] L. Schwartz. Radon measures on arbitrary topological spaces and cylindrical measures , 1973 .
[31] Mickael Tanter,et al. Recovering the Green's function from field-field correlations in an open scattering medium. , 2003, The Journal of the Acoustical Society of America.
[32] Didier Robert,et al. Uniform semiclassical estimates for the propagation of quantum observables , 2002 .
[33] François Treves,et al. Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .
[34] W. Kuperman,et al. Ambient noise cross correlation in free space: theoretical approach. , 2005, The Journal of the Acoustical Society of America.
[35] L. Hörmander. Fourier integral operators. I , 1995 .
[36] W.A. Kuperman,et al. Using ocean ambient noise for array self-localization and self-synchronization , 2005, IEEE Journal of Oceanic Engineering.