Labyrinth bifurcations in optically injected diode lasers

AbstractAlthough pulsating and chaotic regimes in injection-locked semiconductor lasers have been described often in the literature, so far their relative abundance has remained poorly explored. Here, for two popular laser models, we report detailed Lyapunov phase (stability) diagrams characterizing the extension in parameter space of pulsating phases. Our phase (stability) diagrams discriminate regular from chaotic laser emissions and indicate where multistability is to be expected in injection-locked semiconductor lasers.

[1]  A. Gavrielides,et al.  Coexisting periodic attractors in injection-locked diode lasers , 1997 .

[2]  B Krauskopf,et al.  Unnested islands of period doublings in an injected semiconductor laser. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[4]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[5]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[6]  J. Gallas,et al.  Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[8]  Richard K. Chang,et al.  Microspiral Resonators for Integrated Photonics , 2008 .

[9]  W. Chow,et al.  Using chaos for remote sensing of laser radiation. , 2009, Optics express.

[10]  J. Gallas,et al.  Accumulation horizons and period adding in optically injected semiconductor lasers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  J. A. Wheeler,et al.  Waves at walls, corners, heights: Looking for simplicity , 1995 .

[12]  Jason A. C. Gallas,et al.  Lyapunov exponents for a Duffing oscillator , 1995 .

[13]  Jia-Ming Liu,et al.  Chaotic radar using nonlinear laser dynamics , 2004 .

[14]  Gavrielides,et al.  Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  R. Lang,et al.  Injection locking properties of a semiconductor laser , 1982 .

[16]  F.-Y. Lin,et al.  Author's Reply [Comments on "Chaotic Radar Using Nonlinear Laser Dynamics"] , 2004 .

[17]  A. Lindberg,et al.  Observations on the dynamics of semiconductor lasers subjected to external optical injection , 2002 .

[18]  J. G. Freire,et al.  Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. , 2009, The Journal of chemical physics.

[19]  Lyapunov exponents and return maps for a model of a laser with saturable absorber , 1993 .

[20]  Simpson,et al.  Period-doubling cascades and chaos in a semiconductor laser with optical injection. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Daan Lenstra,et al.  Mechanisms for multistability in a semiconductor laser with optical injection. , 2000 .

[22]  Jia-Ming Liu,et al.  Novel photonic applications of nonlinear semiconductor laser dynamics , 2008 .

[23]  Tassos Bountis,et al.  Remerging Feigenbaum trees in dynamical systems , 1984 .

[24]  Vassilios Kovanis,et al.  Investigation of coupled diode laser dynamics using an electronic analog , 1999, Photonics West.

[25]  Dimitris Syvridis,et al.  A Chaos-Based Approach to Secure Communications , 2008 .

[26]  Thomas Erneux,et al.  Period three limit-cycles in injected semiconductor lasers , 2002 .

[27]  A. Lindberg,et al.  Periodic oscillation within the chaotic region in a semiconductor laser subjected to external optical injection. , 2001, Optics letters.

[28]  Yoshisuke Ueda,et al.  Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[30]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[31]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .