On the mass of ultra-light bosonic dark matter from galactic dynamics

We consider the hypothesis that galactic dark matter is composed of ultra-light scalar particles and use internal properties of dwarf spheroidal galaxies to establish a preferred range for the mass m of these bosonic particles. We re-investigate the problem of the longevity of the cold clump in Ursa Minor and the problem of the rapid orbital decay of the globular clusters in Fornax and dwarf ellipticals. Treating the scalar field halo as a rigid background gravitational potential and using N-body simulations, we have explored how the dissolution timescale of the cold clump in Ursa Minor depends on m. It is demonstrated that for masses in the range 0.3x10^-22 eV < m <1x10^-22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the cold clump in Ursa Minor and the wide distribution of globular clusters in Fornax, but small enough to make the mass of the dark halos compatible with dynamical limits. It is encouraging to see that this interval of m is consistent with that needed to suppress the overproduction of substructure in galactic halos and is compatible with the acoustic peaks of cosmic microwave radiation. On the other hand, for self-interacting scalar fields with coupling constant l, values of m^4/l <= 0.55x10^3 eV^4 are required to account for the properties of the dark halos of these dwarf spheroidal galaxies.

[1]  P. Peebles,et al.  Fluid Dark Matter , 2000, The Astrophysical journal.

[2]  J. Lesgourgues,et al.  Galactic halos of fluid dark matter , 2003, astro-ph/0301533.

[3]  E. Cruz-Burelo,et al.  Cosmic Bose dark matter , 2011, 1110.2751.

[4]  T. Matos,et al.  Flat central density profiles from scalar field dark matter halos , 2003, astro-ph/0303455.

[5]  Z. Slepian,et al.  Ruling Out Bosonic Repulsive Dark Matter , 2011, 1109.3844.

[6]  Seidel,et al.  Dynamical evolution of boson stars: Perturbing the ground state. , 1990, Physical review. D, Particles and fields.

[7]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[8]  Jeremiah P. Ostriker,et al.  New Light on Dark Matter , 2003, Science.

[9]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[10]  Sang-Jin Sin Late time cosmological phase transition and galactic halo as Bose liquid , 1994 .

[11]  T. Matos,et al.  $\phi^2$ as Dark Matter , 2008, 0806.0683.

[12]  L. A. Urena-L'opez Bose-Einstein condensation of relativistic Scalar Field Dark Matter , 2008, 0806.3093.

[13]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[14]  Varun Sahni,et al.  New cosmological model of quintessence and dark matter , 2000 .

[15]  Beth Willman,et al.  A common mass scale for satellite galaxies of the Milky Way , 2008, Nature.

[16]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[17]  Eve C. Ostriker,et al.  Dynamical Friction in a Gaseous Medium , 1998, astro-ph/9810324.

[18]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. IV. The Extended Structure of the Ursa Minor Dwarf Spheroidal Galaxy , 2002, astro-ph/0205194.

[19]  J. Peñarrubia,et al.  A UNIVERSAL MASS PROFILE FOR DWARF SPHEROIDAL GALAXIES? , 2009, 0906.0341.

[20]  Michael S. Turner,et al.  Coherent scalar-field oscillations in an expanding universe , 1983 .

[21]  Scalar field as dark matter in the universe , 1999, astro-ph/9908152.

[22]  A. Lundgren,et al.  LUKEWARM DARK MATTER: BOSE CONDENSATION OF ULTRALIGHT PARTICLES , 2009, 1001.0051.

[23]  Repulsive dark matter , 2000, astro-ph/0003018.

[24]  Joachim Stadel,et al.  Does the Fornax dwarf spheroidal have a central cusp or core , 2006 .

[25]  C. Boehmer,et al.  Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.

[26]  A. Su'arez,et al.  Structure formation with scalar-field dark matter: the fluid approach , 2011, 1101.4039.

[27]  Shapiro,et al.  Boson stars: Gravitational equilibria of self-interacting scalar fields. , 1986, Physical review letters.

[28]  R. Barate An upper limit on the , 1998 .

[29]  A. Raga,et al.  AN UPPER LIMIT ON THE MASS OF THE BLACK HOLE IN URSA MINOR DWARF GALAXY , 2009, 0906.0951.

[30]  James S. Bullock,et al.  Halo Substructure and the Power Spectrum , 2003 .

[31]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[32]  Eniko J. M. Madarassy,et al.  Finite temperature effects in Bose-Einstein condensed dark matter halos , 2011, 1110.2829.

[33]  Vanessa Hill,et al.  The Kinematic Status and Mass Content of the Sculptor Dwarf Spheroidal Galaxy , 2008, 0802.4220.

[34]  T. Matos,et al.  ULTRA LIGHT BOSONIC DARK MATTER AND COSMIC MICROWAVE BACKGROUND , 2009, 0908.0054.

[35]  F. Ferraro,et al.  THE DRACO AND URSA MINOR DWARF SPHEROIDALS , 2002 .

[36]  N. Evans,et al.  Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals , 2011, 1106.1062.

[37]  Mark I. Wilkinson,et al.  A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy , 2003, astro-ph/0304093.

[38]  F. S. Guzmán,et al.  Interference pattern in the collision of structures in the Bose-Einstein condensate dark matter model: Comparison with fluids , 2011, 1105.2066.

[39]  T. Matos,et al.  Further analysis of a cosmological model with quintessence and scalar dark matter , 2000, astro-ph/0006024.

[40]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[41]  P. H. Chavanis,et al.  Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results , 2011 .

[42]  Jae-weon Lee,et al.  Minimum mass of galaxies from BEC or scalar field dark matter , 2008, 0812.1342.

[43]  Sin Late-time phase transition and the galactic halo as a Bose liquid. , 1994, Physical review. D, Particles and fields.

[44]  H. Ferguson,et al.  Dynamical Friction in dE Globular Cluster Systems , 2001, astro-ph/0102079.

[45]  E. W. Mielke,et al.  Stability of neutron and boson stars: a new approach based on catastrophe theory , 1991 .

[46]  France,et al.  High-resolution rotation curves of low surface brightness galaxies , 2002 .

[47]  Scalar Field Dark Matter: head-on interaction between two structures , 2006, astro-ph/0610682.

[48]  Jae-weon Lee Is Dark Matter a BEC or Scalar Field , 2008, 0801.1442.

[49]  P. Ferreira,et al.  Ultralight scalar fields and the growth of structure in the Universe , 2010, 1009.3501.

[50]  P. Shapiro,et al.  Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes , 2011, 1106.1256.

[51]  E. Seidel,et al.  Evolution of 3D boson stars with waveform extraction , 2006, gr-qc/0602078.

[52]  B. Robertson,et al.  Constraints on the Structure of Dark Matter Halos from the Rotation Curves of Low Surface Brightness Galaxies , 1999, astro-ph/9911372.

[53]  A. N. V. K. Ravtsov,et al.  A LARGE DARK MATTER CORE IN THE FORNAX DWARF SPHEROIDAL GALAXY? , 2006 .

[54]  Ji,et al.  Late-time phase transition and the galactic halo as a Bose liquid. II. The effect of visible matter. , 1994, Physical review. D, Particles and fields.

[55]  Michael J. Kurtz,et al.  A V and I CCD Mosaic Survey of the Ursa Minor Dwarf Spheroidal Galaxy , 1998 .

[56]  Z. Slepian,et al.  Chance and Chandra , 2011, 1104.2620.

[57]  F. J. Sanchez-Salcedo,et al.  An extensive study of dynamical friction in dwarf galaxies: the role of stars, dark matter, halo profiles and MOND , 2006 .

[58]  Noninteracting dark matter , 1999, astro-ph/9904396.

[59]  Quintessence and scalar dark matter in the universe , 2000, astro-ph/0004332.

[60]  T. D. Lee,et al.  Stability of mini-boson stars☆ , 1989 .

[61]  A. Diaferio,et al.  Resolving the timing problem of the globular clusters orbiting the Fornax dwarf galaxy , 2009, 0903.2874.

[62]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[63]  Lee,et al.  Mini-soliton stars. , 1987, Physical review. D, Particles and fields.

[64]  Dynamical friction of bodies orbiting in a gaseous sphere , 2000, astro-ph/0010003.

[65]  J. Strader,et al.  WIDE-FIELD PRECISION KINEMATICS OF THE M87 GLOBULAR CLUSTER SYSTEM , 2011, 1110.2778.

[66]  N. Wyn Evans,et al.  The importance of tides for the Local Group dwarf spheroidals , 2006 .

[67]  Scalar field dark matter: Nonspherical collapse and late-time behavior , 2006, astro-ph/0608523.

[68]  T. Harko Bose-Einstein condensation of dark matter solves the core/cusp problem , 2011, 1105.2996.

[69]  M. Gleiser,et al.  Stability of boson stars. , 1988, Physical review. D, Particles and fields.