Lipschitz Behavior of the Robust Regularization

To minimize or upper-bound the value of a function “robustly,” we might instead minimize or upper-bound the “$\epsilon$-robust regularization,” defined as the map from a point to the maximum value of the function within an $\epsilon$-radius. This regularization may be easy to compute: convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral radius of a matrix leads to pseudospectral computations. For favorable classes of functions, we show that the robust regularization is Lipschitz around any given point, for all small $\epsilon>0$, even if the original function is non-Lipschitz (like the spectral radius). One such favorable class consists of the semi-algebraic functions. Such functions have graphs that are finite unions of sets defined by finitely many polynomial inequalities, and are commonly encountered in applications.

[1]  J. -B. Hiriart-Urruty,et al.  The deconvolution operation in convex analysis: An introduction , 1994 .

[2]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[3]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[4]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[5]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[6]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[7]  M. Overton,et al.  Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix , 2005 .

[8]  Adrian S. Lewis,et al.  Variational Analysis of Pseudospectra , 2008, SIAM J. Optim..

[9]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[10]  Robust Regularization , 2002 .

[11]  A. Shapiro,et al.  First-order conditions for isolated locally optimal solutions , 1993 .

[12]  Adrian S. Lewis,et al.  Optimal Stability and Eigenvalue Multiplicity , 2001, Found. Comput. Math..

[13]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[14]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[15]  Asen L. Dontchev,et al.  Regularity and Conditioning of Solution Mappings in Variational Analysis , 2004 .

[16]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[17]  Alexander Shapiro Existence and Differentiability of Metric Projections in Hilbert Spaces , 1994, SIAM J. Optim..

[18]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[19]  Wu Li Sharp Lipschitz Constants for Basic Optimal Solutions and Basic Feasible Solutions of Linear Programs , 1994 .

[20]  H. Luthi Algorithms for Worst-Case Design and Applications to Risk Management:Algorithms for Worst-Case Design and Applications to Risk Management , 2002 .

[21]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[22]  M. Coste AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .

[23]  Aris Daniilidis,et al.  Approximate convexity and submonotonicity , 2004 .

[24]  L. El Ghaoui,et al.  Robust decision problems in engineering: a linear matrix inequality approach , 1999 .

[25]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[26]  Hans-Jakob Lüthi,et al.  Algorithms for Worst-Case Design and Applications to Risk Management , 2003 .

[27]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[28]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[29]  L. Trefethen Spectra and pseudospectra , 2005 .

[30]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[31]  S. M. Robinson,et al.  Solution Continuity in Monotone Affine Variational Inequalities , 2007, SIAM J. Optim..