Noise-tolerant quantum speedups in quantum annealing without fine tuning

Quantum annealing is a powerful alternative model of quantum computing, which can succeed in the presence of environmental noise even without error correction. However, despite great effort, no conclusive demonstration of a quantum speedup (relative to state of the art classical algorithms) has been shown for these systems, and rigorous theoretical proofs of a quantum advantage (such as the adiabatic formulation of Grover’s search problem) generally rely on exponential precision in at least some aspects of the system, an unphysical resource guaranteed to be scrambled by experimental uncertainties and random noise. In this work, we propose a new variant of quantum annealing, called RFQA, which can maintain a scalable quantum speedup in the face of noise and modest control precision. Specifically, we consider a modification of flux qubit-based quantum annealing which includes low-frequency oscillations in the directions of the transverse field terms as the system evolves. We show that this method produces a quantum speedup for finding ground states in the Grover problem and quantum random energy model, and thus should be widely applicable to other hard optimization problems which can be formulated as quantum spin glasses. Further, we explore three realistic noise channels and show that the speedup from RFQA is resilient to 1/f-like local potential fluctuations and local heating from interaction with a sufficiently low temperature bath. Another noise channel, bath-assisted quantum cooling transitions, actually accelerates the algorithm and may outweigh the negative effects of the others. We also detail how RFQA may be implemented experimentally with current technology.

[1]  M. Rigol,et al.  Heating Rates in Periodically Driven Strongly Interacting Quantum Many-Body Systems. , 2019, Physical review letters.

[2]  T. Grass Quantum Annealing with Longitudinal Bias Fields. , 2019, Physical review letters.

[3]  T. Kadowaki,et al.  Experimental and Theoretical Study of Thermodynamic Effects in a Quantum Annealer , 2019, Journal of the Physical Society of Japan.

[4]  Itay Hen,et al.  How quantum is the speedup in adiabatic unstructured search? , 2018, Quantum Information Processing.

[5]  E. Rieffel,et al.  Power of Pausing: Advancing Understanding of Thermalization in Experimental Quantum Annealers , 2018, Physical Review Applied.

[6]  Hiroki Oshiyama,et al.  Quantum Annealing of Pure and Random Ising Chains Coupled to a Bosonic Environment , 2018, Journal of the Physical Society of Japan.

[7]  M. Paris,et al.  Quantum spatial search on graphs subject to dynamical noise , 2018, Physical Review A.

[8]  Daniel A. Lidar,et al.  Quantum annealing of the p -spin model under inhomogeneous transverse field driving , 2018, Physical Review A.

[9]  H. Katzgraber,et al.  How Small-World Interactions Can Lead to Improved Quantum Annealer Designs , 2018, Physical Review Applied.

[10]  Daniel Jaschke,et al.  Thermalization in the quantum Ising model—approximations, limits, and beyond , 2018, Quantum Science and Technology.

[11]  G. Santoro,et al.  Optimal working point in dissipative quantum annealing , 2018, Physical Review B.

[12]  R. Moessner,et al.  Onset of Floquet thermalization , 2018, Physical Review B.

[13]  W. Vinci,et al.  Optimally stopped variational quantum algorithms , 2017, 1710.05365.

[14]  M. Mohseni,et al.  Environment-assisted analog quantum search , 2017, Physical Review A.

[15]  B. Spivak,et al.  The sign phase transition in the problem of interfering directed paths , 2017, 1709.03516.

[16]  S. Bose,et al.  Quantum search with hybrid adiabatic–quantum-walk algorithms and realistic noise , 2017, Physical Review A.

[17]  Daniel A. Lidar,et al.  Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.

[18]  G. Santoro,et al.  Dissipation in adiabatic quantum computers: lessons from an exactly solvable model , 2017, 1704.03183.

[19]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[20]  D. Rosenberg,et al.  Coherent Coupled Qubits for Quantum Annealing , 2017, 1701.06544.

[21]  Daniel A. Lidar,et al.  Relaxation versus adiabatic quantum steady-state preparation , 2016, 1612.07979.

[22]  W. Roeck,et al.  Adiabatic Theorem for Quantum Spin Systems. , 2016, Physical review letters.

[23]  A. Scardicchio,et al.  Clustering of Nonergodic Eigenstates in Quantum Spin Glasses. , 2016, Physical review letters.

[24]  M. Troyer,et al.  Nonstoquastic Hamiltonians and quantum annealing of an Ising spin glass , 2016, 1609.06558.

[25]  Theodore J. Yoder,et al.  Fixed-point adiabatic quantum search , 2016, 1609.03603.

[26]  S. Knysh,et al.  Zero-temperature quantum annealing bottlenecks in the spin-glass phase , 2016, Nature Communications.

[27]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[28]  A. Polkovnikov,et al.  Minimizing irreversible losses in quantum systems by local counterdiabatic driving , 2016, Proceedings of the National Academy of Sciences.

[29]  M. Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[30]  Daniel A. Lidar,et al.  Nested quantum annealing correction , 2015, npj Quantum Information.

[31]  S. Knysh,et al.  Quantum Annealing via Environment-Mediated Quantum Diffusion. , 2015, Physical review letters.

[32]  H. Neven,et al.  Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. , 2015, Physical review letters.

[33]  A. Scardicchio,et al.  The many-body localized phase of the quantum random energy model , 2015, 1509.08926.

[34]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[35]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[36]  A. Scardicchio,et al.  Forward approximation as a mean-field approximation for the Anderson and many-body localization transitions , 2015, 1508.05097.

[37]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[38]  Michael Knap,et al.  Adiabatic Quantum Search in Open Systems. , 2015, Physical review letters.

[39]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[40]  Theodore J. Yoder,et al.  Fixed-point quantum search with an optimal number of queries. , 2014, Physical review letters.

[41]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[42]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[43]  M. Rigol,et al.  Long-time behavior of periodically driven isolated interacting lattice systems , 2014, 1402.5141.

[44]  Yasunobu Nakamura,et al.  Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution , 2013, Nature Communications.

[45]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[46]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.

[47]  Marc Henneaux,et al.  The Theory of the Quantum World , 2013 .

[48]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[49]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[50]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[51]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[52]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[53]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[54]  Mohan Sarovar,et al.  Equivalence and limitations of error suppression techniques for adiabatic quantum computing. , 2012, 1208.6371.

[55]  R. Moessner,et al.  Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. , 2012, Physical review letters.

[56]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[57]  D. Cory,et al.  Dynamical decoupling and noise spectroscopy with a superconducting flux qubit , 2011, 1101.4707.

[58]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[59]  M. W. Johnson,et al.  Experimental demonstration of a robust and scalable flux qubit , 2009, 0909.4321.

[60]  Kurunathan Ratnavelu,et al.  FRONTIERS IN PHYSICS , 2009 .

[61]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[62]  P. Love,et al.  Thermally assisted adiabatic quantum computation. , 2006, Physical review letters.

[63]  Daniel A. Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2006, Physical review letters.

[64]  E. Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005, quant-ph/0512159.

[65]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[66]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[67]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[68]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[69]  D. Phoenix Annual Review , 2000, Encyclopedia of Autism Spectrum Disorders.

[70]  P. Stamp,et al.  Theory of the spin bath , 2000, cond-mat/0001080.

[71]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[72]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[73]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[74]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[75]  J. D. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[76]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[77]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[78]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[79]  Improved coherence leads to gains in quantum annealing performance , 2019 .

[80]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[81]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[82]  E. Lieb,et al.  Physical Review Letters , 1958, Nature.

[83]  E. B. Wilson,et al.  PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1916, Science.