Classification of knotted tori in 2-metastable dimension
暂无分享,去创建一个
[1] F. Quinn,et al. Bordism invariants of intersections of submanifolds , 1974 .
[2] J. Hudson. Piecewise linear topology , 1966 .
[3] Embeddings from the point of view of immersion theory: Part II , 1999, math/9905202.
[4] Charles Terence Clegg Wall,et al. Surgery on compact manifolds , 1970 .
[5] G. F. Paechter. THE GROUPS π r (V n,m ) (III) , 1959 .
[6] A. Skopenkov. A new invariant and parametric connected sum of embeddings , 2005 .
[7] G. F. Paechter. THE GROUPS π r ( Vn,m ) , 1958 .
[8] U. Koschorke. On link maps and their homotopy classification , 1990 .
[9] M. Kervaire. An Interpretation of G. Whitehead's Generalization of H. Hopf's Invariant , 1959 .
[10] B. Sanderson,et al. Geometric interpretations of the generalized Hopf invariant. , 1977 .
[11] D. Handel. On the normal bundle of an embedding , 1967 .
[12] A. Haefliger,et al. Enlacements de sphères en codimension supérieure à 2 , 1966 .
[13] Dušan D. Repovš,et al. On the Browder-Levine-Novikov Embedding Theorems , 2021, 2104.01820.
[14] SUSPENSION THEOREMS FOR LINKS AND LINK MAPS , 2006, math/0610320.
[15] J. Levine. A Classification of Differentiable Knots , 1965 .
[16] Uwe Kaiser,et al. Link homotopy in the 2-metastable range , 1998 .
[17] G. F. Paechter. THE GROUPS π r ( V n,m ) (IV) , 1959 .
[18] Dušan D. Repovš,et al. On Embeddings of Tori in Euclidean Spaces , 2005 .
[19] Embeddings from the point of view of immersion theory , 1999, math/9905203.
[20] V. M. Nezhinskii. A SUSPENSION SEQUENCE IN THE THEORY OF LINKS , 1985 .
[21] Dušan D. Repovš,et al. Новые результаты о вложениях полиэдров и многообразий в евклидовы пространства@@@New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .
[22] Peter Teichner,et al. Alexander Duality, Gropes and Link Homotopy , 1997 .
[23] A. Skopenkov,et al. On the Haefliger-Hirsch-Wu invariants for embeddings and immersions , 2002 .
[24] A. Haefliger. Lissage des immersions—I , 1967 .
[25] G. F. Paechter. THE GROUPS 7π(V nm )(I) , 1956 .
[26] All two dimensional links are null homotopic , 1999, math/0004021.
[27] Dušan D. Repovš,et al. A new invariant of higher-dimensional embeddings , 2008 .
[28] A. Skopenkov. CLASSIFICATION OF EMBEDDINGS BELOW THE METASTABLE DIMENSION , 2006 .
[29] Dušan Repovš,et al. New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .
[30] U. Koschorke. Multiple point invariants of link maps , 1988 .
[31] S. Ferry,et al. The rational classification of links of codimension > 2 , 2011, 1106.1455.
[32] M. Skopenkov. When the set of embeddings is finite , 2011 .
[33] A. Skopenkov. A classification of smooth embeddings of 3-manifolds in 6-space , 2008 .
[34] Dušan D. Repovš,et al. Homotopy type of the complement of an immersion and classification of embeddings of tori , 2008, 0803.4285.
[35] A. Skopenkov,et al. A CLASSIFICATION OF SMOOTH EMBEDDINGS OF FOUR-MANIFOLDS IN SEVEN-SPACE, II , 2011 .
[36] M. Irwin. Embeddings of Polyhedral Manifolds , 1965 .
[37] I. James. ON THE ITERATED SUSPENSION , 1954 .
[38] A. Haefliger. Differentiable Embeddings of S n in S n+q for q > 2 , 1966 .
[39] C. Weber. Plongements de polyèdres dans le domaine métastable , 1967 .
[40] U. Koschorke. Link maps and the geometry of their invariants , 1988 .
[41] A. Skopenkov. Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.
[42] P. Kirk. Link homotopy with one codimension two component , 1990 .
[43] U. Koschorke. Nielsen coincidence theory in arbitrary codimensions , 2004, math/0408044.