Classification of knotted tori in 2-metastable dimension

This paper is devoted to the classical Knotting Problem: for a given manifold and number describe the set of isotopy classes of embeddings . We study the specific case of knotted tori, that is, the embeddings . The classification of knotted tori up to isotopy in the metastable dimension range , , was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem Assume that and . Then the set of isotopy classes of smooth embeddings is infinite if and only if either or is divisible by . Bibliography: 35 titles.

[1]  F. Quinn,et al.  Bordism invariants of intersections of submanifolds , 1974 .

[2]  J. Hudson Piecewise linear topology , 1966 .

[3]  Embeddings from the point of view of immersion theory: Part II , 1999, math/9905202.

[4]  Charles Terence Clegg Wall,et al.  Surgery on compact manifolds , 1970 .

[5]  G. F. Paechter THE GROUPS π r (V n,m ) (III) , 1959 .

[6]  A. Skopenkov A new invariant and parametric connected sum of embeddings , 2005 .

[7]  G. F. Paechter THE GROUPS π r ( Vn,m ) , 1958 .

[8]  U. Koschorke On link maps and their homotopy classification , 1990 .

[9]  M. Kervaire An Interpretation of G. Whitehead's Generalization of H. Hopf's Invariant , 1959 .

[10]  B. Sanderson,et al.  Geometric interpretations of the generalized Hopf invariant. , 1977 .

[11]  D. Handel On the normal bundle of an embedding , 1967 .

[12]  A. Haefliger,et al.  Enlacements de sphères en codimension supérieure à 2 , 1966 .

[13]  Dušan D. Repovš,et al.  On the Browder-Levine-Novikov Embedding Theorems , 2021, 2104.01820.

[14]  SUSPENSION THEOREMS FOR LINKS AND LINK MAPS , 2006, math/0610320.

[15]  J. Levine A Classification of Differentiable Knots , 1965 .

[16]  Uwe Kaiser,et al.  Link homotopy in the 2-metastable range , 1998 .

[17]  G. F. Paechter THE GROUPS π r ( V n,m ) (IV) , 1959 .

[18]  Dušan D. Repovš,et al.  On Embeddings of Tori in Euclidean Spaces , 2005 .

[19]  Embeddings from the point of view of immersion theory , 1999, math/9905203.

[20]  V. M. Nezhinskii A SUSPENSION SEQUENCE IN THE THEORY OF LINKS , 1985 .

[21]  Dušan D. Repovš,et al.  Новые результаты о вложениях полиэдров и многообразий в евклидовы пространства@@@New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[22]  Peter Teichner,et al.  Alexander Duality, Gropes and Link Homotopy , 1997 .

[23]  A. Skopenkov,et al.  On the Haefliger-Hirsch-Wu invariants for embeddings and immersions , 2002 .

[24]  A. Haefliger Lissage des immersions—I , 1967 .

[25]  G. F. Paechter THE GROUPS 7π(V nm )(I) , 1956 .

[26]  All two dimensional links are null homotopic , 1999, math/0004021.

[27]  Dušan D. Repovš,et al.  A new invariant of higher-dimensional embeddings , 2008 .

[28]  A. Skopenkov CLASSIFICATION OF EMBEDDINGS BELOW THE METASTABLE DIMENSION , 2006 .

[29]  Dušan Repovš,et al.  New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[30]  U. Koschorke Multiple point invariants of link maps , 1988 .

[31]  S. Ferry,et al.  The rational classification of links of codimension > 2 , 2011, 1106.1455.

[32]  M. Skopenkov When the set of embeddings is finite , 2011 .

[33]  A. Skopenkov A classification of smooth embeddings of 3-manifolds in 6-space , 2008 .

[34]  Dušan D. Repovš,et al.  Homotopy type of the complement of an immersion and classification of embeddings of tori , 2008, 0803.4285.

[35]  A. Skopenkov,et al.  A CLASSIFICATION OF SMOOTH EMBEDDINGS OF FOUR-MANIFOLDS IN SEVEN-SPACE, II , 2011 .

[36]  M. Irwin Embeddings of Polyhedral Manifolds , 1965 .

[37]  I. James ON THE ITERATED SUSPENSION , 1954 .

[38]  A. Haefliger Differentiable Embeddings of S n in S n+q for q > 2 , 1966 .

[39]  C. Weber Plongements de polyèdres dans le domaine métastable , 1967 .

[40]  U. Koschorke Link maps and the geometry of their invariants , 1988 .

[41]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[42]  P. Kirk Link homotopy with one codimension two component , 1990 .

[43]  U. Koschorke Nielsen coincidence theory in arbitrary codimensions , 2004, math/0408044.