Nonlinear Estimator Design on the Special Orthogonal Group Using Vector Measurements Directly

The convergence properties of popular nonlinear attitude estimators can be traced to the choice of an attitude error function. This paper considers a nonlinear deterministic direction cosine matrix estimator whose form is derived from an alternate attitude error function. While the resulting estimator shares several properties with those previously presented in the literature, the careful selection of an attitude error function results in an estimator with superior convergence properties. The attitude estimate is propagated using a rate gyroscope measurement and corrected using two or more vector measurements. Simulation and experimental results are presented that highlight the desirable properties of the proposed estimator.

[1]  Robert E. Mahony,et al.  Minimum-Energy Filtering for Attitude Estimation , 2013, IEEE Transactions on Automatic Control.

[2]  Arnaud Doucet,et al.  Sequential Monte Carlo Methods , 2006, Handbook of Graphical Models.

[3]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  Minh-Duc Hua Attitude estimation for accelerated vehicles using GPS/INS measurements , 2010 .

[6]  S. Bhat,et al.  A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .

[7]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[8]  Robert E. Mahony,et al.  Attitude estimation on SO[3] based on direct inertial measurements , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[9]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[10]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[11]  J. Crassidis,et al.  Particle Filtering for Sequential Spacecraft Attitude Estimation , 2004 .

[12]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[13]  Yaakov Oshman,et al.  Estimating Attitude from Vector Observations Using a Genetic Algorithm-Embedded Quaternion Particle Filter , 2004 .

[14]  Robert M. Sanner,et al.  A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise , 2003, IEEE Trans. Autom. Control..

[15]  Robert E. Mahony,et al.  Near-Optimal Deterministic Filtering on the Rotation Group , 2011, IEEE Transactions on Automatic Control.

[16]  Giancarlo Troni,et al.  Magnetometer bias calibration based on relative angular position: Theory and experimental comparative evaluation , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  T. Hamel,et al.  Complementary filter design on the special orthogonal group SO(3) , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[19]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[20]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[21]  Alireza Khosravian,et al.  Rigid Body Attitude Control Using a Single Vector Measurement and Gyro , 2012, IEEE Transactions on Automatic Control.

[22]  Itzhak Barkana,et al.  Simple adaptive controlߞA stable direct model reference adaptive control methodology - brief survey , 2007, ALCOSP.

[23]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[24]  Dena Firoozi,et al.  Analysis of gyro noise in non-linear attitude estimation using a single vector measurement , 2012 .

[25]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[26]  Louis L. Whitcomb,et al.  Adaptive Identification on the Group of Rigid-Body Rotations and its Application to Underwater Vehicle Navigation , 2005, IEEE Transactions on Robotics.

[27]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[28]  吉澤 太郎 An Invariance Principle in the Theory of Stability (常微分方程式及び函数微分方程式研究会報告集) , 1968 .

[29]  Vineet R. Kamat,et al.  Plane Registration Leveraged by Global Constraints for Context‐Aware AEC Applications , 2013, Comput. Aided Civ. Infrastructure Eng..

[30]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[31]  Kenneth Jensen Generalized Nonlinear Complementary Attitude Filter , 2011 .

[32]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[33]  Tor Arne Johansen,et al.  Attitude Estimation Using Biased Gyro and Vector Measurements With Time-Varying Reference Vectors , 2012, IEEE Transactions on Automatic Control.

[34]  Tarek Hamel,et al.  A coupled estimation and control analysis for attitude stabilisation of mini aerial vehicles , 2006 .

[35]  S. Salcudean A globally convergent angular velocity observer for rigid body motion , 1991 .

[36]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[37]  Thor I. Fossen,et al.  A nonlinear observer for GPS and INS integration , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[38]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[39]  Tamer Basar An Invariance Principle in the Theory of Stability , 2001 .

[40]  Taeyoung Lee,et al.  Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers , 2012, Syst. Control. Lett..

[41]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[42]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[43]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .