Shear attenuation and anelastic mechanisms in the central Pacific upper mantle

[1]  John Frederick Rudge,et al.  Experimental Study of Dislocation Damping Using a Rock Analogue , 2019, Journal of Geophysical Research: Solid Earth.

[2]  C. Dalton,et al.  Evidence for dehydration-modulated small-scale convection in the oceanic upper mantle from seafloor bathymetry and Rayleigh wave phase velocity , 2019, Earth and Planetary Science Letters.

[3]  R. Evans,et al.  High‐Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surface‐Wave Anisotropy , 2019, Journal of Geophysical Research: Solid Earth.

[4]  R. Evans,et al.  Azimuthal Seismic Anisotropy of 70‐Ma Pacific‐Plate Upper Mantle , 2017, Journal of Geophysical Research: Solid Earth.

[5]  D. Wiens,et al.  P-wave attenuation structure of the Lau back-arc basin and implications for mantle wedge processes , 2018, Earth and Planetary Science Letters.

[6]  Jeffrey Park,et al.  On the Origin of the Upper Mantle Seismic Discontinuities , 2018, Lithospheric Discontinuities.

[7]  D. Forsyth,et al.  Shear attenuation beneath the Juan de Fuca plate: Implications for mantle flow and dehydration , 2018, Earth and Planetary Science Letters.

[8]  A. Berry,et al.  Redox-influenced seismic properties of upper-mantle olivine , 2018, Nature.

[9]  H. Shiobara,et al.  Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system , 2017, Science.

[10]  C. Dalton,et al.  The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation , 2016 .

[11]  C. Rychert,et al.  Joint inversion of teleseismic and ambient noise Rayleigh waves for phase velocity maps, an application to Iceland , 2016 .

[12]  R. Evans,et al.  High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere , 2016, Nature.

[13]  J. Warren Global variations in abyssal peridotite compositions , 2016 .

[14]  Yasuko Takei,et al.  Polycrystal anelasticity at near‐solidus temperatures , 2016 .

[15]  I. Jackson,et al.  Transient Creep and Strain Energy Dissipation: An Experimental Perspective , 2015 .

[16]  R. Evans,et al.  The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment , 2015 .

[17]  Samuel W. Bell,et al.  Removing Noise from the Vertical Component Records of Ocean‐Bottom Seismometers: Results from Year One of the Cascadia Initiative , 2015 .

[18]  A. Foster,et al.  Overtone Interference in Array‐Based Love‐Wave Phase Measurements , 2014 .

[19]  D. Wiens,et al.  Reconciling mantle attenuation‐temperature relationships from seismology, petrology, and laboratory measurements , 2014 .

[20]  C. Langmuir,et al.  Geophysical and Geochemical Evidence for Deep Temperature Variations Beneath Mid-Ocean Ridges , 2014, Science.

[21]  R. Skelton,et al.  Elastically accommodated grain-boundary sliding: New insights from experiment and modeling , 2014 .

[22]  Barbara Romanowicz,et al.  Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere , 2013, Science.

[23]  S. Karato,et al.  Structures of the oceanic lithosphere‐asthenosphere boundary: Mineral‐physics modeling and seismological signatures , 2013 .

[24]  D. Forsyth Geophysical Constraints on Mantle Flow and Melt Generation Beneath Mid‐Ocean Ridges , 2013 .

[25]  D. Forsyth,et al.  Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference , 2013 .

[26]  U. Faul,et al.  High‐resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two‐grain boundaries , 2013 .

[27]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[28]  N. Schmerr The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary , 2012, Science.

[29]  S. Karato On the origin of the asthenosphere , 2012 .

[30]  Greg Hirth,et al.  Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle , 2011 .

[31]  P. Shearer,et al.  Imaging the lithosphere-asthenosphere boundary beneath the Pacific using SS waveform modeling , 2011 .

[32]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[33]  I. Jackson,et al.  Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application , 2010 .

[34]  R. Cooper,et al.  A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep; correlating creep and attenuation responses for materials with a fine grain size , 2010 .

[35]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[36]  T. Kanazawa,et al.  Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates , 2009, Science.

[37]  A. Dziewoński,et al.  The global attenuation structure of the upper mantle , 2008 .

[38]  J. Gerald,et al.  Seismic properties of Anita Bay Dunite: an Exploratory Study of the Influence of Water , 2007 .

[39]  D. Forsyth,et al.  Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone , 2007 .

[40]  D. Forsyth,et al.  Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels , 2006 .

[41]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[42]  Adrian Lenardic,et al.  The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers , 2005 .

[43]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication , 2004 .

[44]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications , 2004 .

[45]  R. Cooper Seismic wave attenuation: Energy dissipation in viscoelastic crystalline solids , 2002 .

[46]  D. Kohlstedt,et al.  Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime , 2000 .

[47]  R. Cooper,et al.  Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology , 1998 .

[48]  T. Jordan,et al.  Seismic structure of the upper mantle in a central Pacific corridor , 1996 .

[49]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .

[50]  G. Ekström,et al.  A radial model of anelasticity consistent with long-period surface-wave attenuation , 1996 .

[51]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[52]  R. Duncan,et al.  The Cobb‐Eickelberg Seamount Chain: Hotspot volcanism with mid‐ocean ridge basalt affinity , 1990 .

[53]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[54]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[55]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[56]  Don L. Anderson,et al.  Velocity dispersion due to anelasticity; implications for seismology and mantle composition , 1976 .