A fast time domain solver for the equilibrium Dyson equation

We consider the numerical solution of the real time equilibrium Dyson equation, which is used in calculations of the dynamical properties of quantum many-body systems. We show that this equation can be written as a system of coupled, nonlinear, convolutional Volterra integro-differential equations, for which the kernel depends self-consistently on the solution. As is typical in the numerical solution of Volterra-type equations, the computational bottleneck is the quadratic-scaling cost of history integration. However, the structure of the nonlinear Volterra integral operator precludes the use of standard fast algorithms. We propose a quasilinear-scaling FFT-based algorithm which respects the structure of the nonlinear integral operator. The resulting method can reach large propagation times, and is thus well-suited to explore quantum many-body phenomena at low energy scales. We demonstrate the solver with two standard model systems: the Bethe graph, and the Sachdev-Ye-Kitaev model.

[1]  Lin Lin,et al.  Robust analytic continuation of Green's functions via projection, pole estimation, and semidefinite relaxation , 2022, Physical Review B.

[2]  Jason Kaye,et al.  A fast, high-order numerical method for the simulation of single-excitation states in quantum optics , 2021, J. Comput. Phys..

[3]  Jason Kaye,et al.  libdlr: Efficient imaginary time calculations using the discrete Lehmann representation , 2021, Comput. Phys. Commun..

[4]  A. Georges,et al.  Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids , 2021, Reviews of Modern Physics.

[5]  Jason Kaye,et al.  Discrete Lehmann representation of imaginary time Green's functions , 2021, Physical Review B.

[6]  K. Yoshimi,et al.  Efficient ab initio many-body calculations based on sparse modeling of Matsubara Green's function , 2021, SciPost Physics Lecture Notes.

[7]  E. Gull,et al.  Analytical continuation of matrix-valued functions: Carathéodory formalism , 2021, Physical Review B.

[8]  A. Kutepov Electronic structure of LaNiO2 and CaCuO2 from a self-consistent vertex-corrected GW approach , 2021, Physical review B.

[9]  Herbert Egger,et al.  A fast and oblivious matrix compression algorithm for Volterra integral operators , 2021, Advances in Computational Mathematics.

[10]  Tigran A. Sedrakyan,et al.  Optical lattice platform for the Sachdev-Ye-Kitaev model , 2021 .

[11]  E. Gull,et al.  Nevanlinna Analytical Continuation. , 2020, Physical review letters.

[12]  Bengt Fornberg,et al.  Improving the Accuracy of the Trapezoidal Rule , 2021, SIAM Rev..

[13]  Jason Kaye,et al.  Low rank compression in the numerical solution of the nonequilibrium Dyson equation , 2020, 2010.06511.

[14]  E. Gull,et al.  Legendre-spectral Dyson equation solver with super-exponential convergence. , 2020, The Journal of chemical physics.

[15]  Leslie Greengard,et al.  A High‐Order Integral Equation‐Based Solver for the Time‐Dependent Schrödinger Equation , 2020, Communications on Pure and Applied Mathematics.

[16]  Martin Eckstein,et al.  NESSi: The Non-Equilibrium Systems Simulation package , 2019, Comput. Phys. Commun..

[17]  A. Kitaev,et al.  Notes on the complex Sachdev-Ye-Kitaev model , 2019, Journal of High Energy Physics.

[18]  E. Gull,et al.  Sparse sampling approach to efficient ab initio calculations at finite temperature , 2019, Physical Review B.

[19]  L. Greengard,et al.  Fast integral equation methods for linear and semilinear heat equations in moving domains , 2019, ArXiv.

[20]  Dorothea Golze,et al.  The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy , 2019, Front. Chem..

[21]  N. W. Talarico,et al.  A Scalable Numerical Approach to the Solution of the Dyson Equation for the Non‐Equilibrium Single‐Particle Green's Function , 2018, physica status solidi (b).

[22]  Bengt Fornberg,et al.  An improved Gregory-like method for 1-D quadrature , 2018, Numerische Mathematik.

[23]  L. Greengard,et al.  Transparent Boundary Conditions for the Time-Dependent Schr\"odinger Equation with a Vector Potential , 2018, 1812.04200.

[24]  Emanuel Gull,et al.  Chebyshev polynomial representation of imaginary-time response functions , 2018, Physical Review B.

[25]  H. Shinaoka,et al.  Performance analysis of a physically constructed orthogonal representation of imaginary-time Green's function , 2018, Physical Review B.

[26]  M. Ohzeki,et al.  Compressing Green's function using intermediate representation between imaginary-time and real-frequency domains , 2017, 1702.03054.

[27]  E Solano,et al.  Digital Quantum Simulation of Minimal AdS/CFT. , 2016, Physical review letters.

[28]  Alexei A Kananenka,et al.  Efficient Temperature-Dependent Green's Functions Methods for Realistic Systems: Compact Grids for Orthogonal Polynomial Transforms. , 2015, Journal of chemical theory and computation.

[29]  P. Werner,et al.  Beyond the Hubbard bands in strongly correlated lattice bosons , 2015, 1506.05609.

[30]  L. Greengard,et al.  Efficient sum-of-exponentials approximations for the heat kernel and their applications , 2013, Adv. Comput. Math..

[31]  R. Leeuwen,et al.  Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas , 2014, 1408.6163.

[32]  Hideo Aoki,et al.  Nonequilibrium dynamical mean-field theory and its applications , 2013, 1310.5329.

[33]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[34]  Hartmut Hafermann,et al.  Orthogonal polynomial representation of imaginary-time Green’s functions , 2011, 1104.3215.

[35]  D. Sánchez-Portal,et al.  An O(N3) implementation of Hedin's GW approximation for molecules. , 2011, The Journal of chemical physics.

[36]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[37]  Jing-Rebecca Li,et al.  A Fast Time Stepping Method for Evaluating Fractional Integrals , 2009, SIAM J. Sci. Comput..

[38]  Robert van Leeuwen,et al.  Time propagation of the Kadanoff-Baym equations for inhomogeneous systems. , 2009, The Journal of chemical physics.

[39]  Leslie Greengard,et al.  Efficient representation of nonreflecting boundary conditions for the time‐dependent Schrödinger equation in two dimensions , 2008 .

[40]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[41]  George Biros,et al.  A High-Order Solver for the Heat Equation in 1D domains with Moving Boundaries , 2007, SIAM J. Sci. Comput..

[42]  R. Leeuwen,et al.  Propagating the Kadanoff-Baym equations for atoms and molecules , 2006 .

[43]  C. Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2005, SIAM J. Sci. Comput..

[44]  N. Dahlen,et al.  Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation. , 2005, The Journal of chemical physics.

[45]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[46]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[47]  Leslie Greengard,et al.  Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .

[48]  A. Eguiluz,et al.  Band-gap problem in semiconductors revisited: effects of core states and many-body self-consistency. , 2002, Physical review letters.

[49]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[50]  Wei Ku,et al.  Electronic Excitations in Metals and Semiconductors: Ab Initio Studies of Realistic Many-Particle Systems , 2000 .

[51]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[52]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[53]  U. V. Barth,et al.  Fully self-consistent GW self-energy of the electron gas , 1998 .

[54]  Vladimir Rokhlin,et al.  High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .

[55]  Holm,et al.  Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation. , 1996, Physical review. B, Condensed matter.

[56]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[57]  Mark Jarrell,et al.  Bayesian Inference and the Analytic Continuation of Imaginary-Time Quantum Monte Carlo Data , 1995 .

[58]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[59]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[60]  R. Bishop,et al.  Quantum many-particle systems , 1990 .

[61]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[62]  Eleftherios N. Economou,et al.  Green's functions in quantum physics , 1979 .

[63]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[64]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .