Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries

Abstract Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.

[1]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[2]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[3]  M. Armand,et al.  An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2 , 2013 .

[4]  M. Ge,et al.  Review of porous silicon preparation and its application for lithium-ion battery anodes , 2013, Nanotechnology.

[5]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[6]  S. Komaba,et al.  A comparative study of LiCoO2 polymorphs: structural and electrochemical characterization of O2-, O3-, and O4-type phases. , 2013, Inorganic chemistry.

[7]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[8]  Gerbrand Ceder,et al.  Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries , 2013 .

[9]  Maxim Avdeev,et al.  Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. , 2013, Inorganic chemistry.

[10]  Canhui Lu,et al.  A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance , 2013 .

[11]  R. Bissessur,et al.  Unique properties of α-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution , 2013 .

[12]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[13]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[14]  Seung M. Oh,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .

[15]  Haoshen Zhou,et al.  Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+) , 2013 .

[16]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[17]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[18]  Tomoyuki Matsuda,et al.  A sodium manganese ferrocyanide thin film for Na-ion batteries. , 2013, Chemical communications.

[19]  Sai-Cheong Chung,et al.  A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .

[20]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[21]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[22]  Christopher S. Johnson,et al.  Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles , 2013 .

[23]  Daniel J. Haynes,et al.  Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4 , 2012 .

[24]  Gerbrand Ceder,et al.  Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. , 2012, Journal of the American Chemical Society.

[25]  S. Komaba,et al.  Electrochemical behavior and structural change of spinel-type Li[LixMn2−x]O4 (x=0 and 0.2) in sodium cells , 2012 .

[26]  C. Delmas,et al.  Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3) , 2012 .

[27]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[28]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[29]  David J. Pine,et al.  Synthesis and assembly of colloidal particles with sticky dimples. , 2012, Journal of the American Chemical Society.

[30]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[31]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[32]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[33]  Takayuki Komatsu,et al.  Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery , 2012 .

[34]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[35]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[36]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[37]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[38]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[39]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[40]  Seong Ihl Woo,et al.  Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. , 2012, Physical chemistry chemical physics : PCCP.

[41]  Shinichi Komaba,et al.  A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries , 2012 .

[42]  G. Schuster,et al.  DNA-programmed modular assembly of cyclic and linear nanoarrays for the synthesis of two-dimensional conducting polymers. , 2012, Journal of the American Chemical Society.

[43]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[44]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[45]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[46]  Tomoyuki Hamada,et al.  Formation and diffusion of vacancy-polaron complex in olivine-type LiMnPO 4 and LiFePO 4 , 2011 .

[47]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[48]  K. Kubota,et al.  Structure and electrode reactions of layered rocksalt LiFeO 2 nanoparticles for lithium battery cath , 2011 .

[49]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[50]  Jun-ichi Yamaki,et al.  Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries , 2011 .

[51]  L. Nazar,et al.  Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials , 2011 .

[52]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[53]  Khiem Trad,et al.  NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries , 2010 .

[54]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[55]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[56]  C. Delmas,et al.  Study of a Layered Iron(III) Phosphate Phase Na3Fe3 ( PO4 ) 4 Used as Positive Electrode in Lithium Batteries , 2010 .

[57]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic Chemistry.

[58]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[59]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[60]  C. Delmas,et al.  Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2 , 2010 .

[61]  C. Delmas,et al.  A Layered Iron(III) Phosphate Phase, Na3Fe3(PO4)4: Synthesis, Structure, and Electrochemical Properties as Positive Electrode in Sodium Batteries , 2010 .

[62]  M. Islam,et al.  Anti-Site Defects and Ion Migration in the LiFe0.5Mn0.5PO4 Mixed-Metal Cathode Material† , 2010 .

[63]  N. Nishimura,et al.  Guest-encapsulation properties of a self-assembled capsule by dynamic boronic ester bonds. , 2010, Journal of the American Chemical Society.

[64]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[65]  C. Delmas,et al.  Sodium ion mobility in Na(x)CoO2 (0.6 < x < 0.75) cobaltites studied by 23Na MAS NMR. , 2009, Inorganic chemistry.

[66]  Jun-ichi Yamaki,et al.  Cathode properties of metal trifluorides in Li and Na secondary batteries , 2009 .

[67]  Jun-ichi Yamaki,et al.  Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries , 2009 .

[68]  Shinichi Komaba,et al.  Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes , 2008 .

[69]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[70]  M. Tabuchi,et al.  Stabilization of tetra-and pentavalent Fe ions in Fe-substituted Li2MnO3 with layered rock-salt structure , 2008 .

[71]  H. Fang,et al.  The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity , 2008 .

[72]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[73]  K. W. Kim,et al.  Electrochemical properties of sodium/pyrite battery at room temperature , 2007 .

[74]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[75]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[76]  Jun-ichi Yamaki,et al.  FePO4 cathode properties for Li and Na secondary cells , 2006 .

[77]  Y. Shao-horn,et al.  On the mechanism of the P2–Na0.70CoO2→O2–LiCoO2 exchange reaction—Part I: proposition of a model to describe the P2–O2 transition , 2004 .

[78]  H. Sakaebe,et al.  Study of the Capacity Fading Mechanism for Fe-Substituted LiCoO2 Positive Electrode , 2004 .

[79]  R. Kanno,et al.  Synthesis, structure and electrochemical properties of layered material, Li2/3[Mn1/3Fe2/3]O2, with mixed stacking states , 2003 .

[80]  M. Amara,et al.  Reinvestigation of the binary diagram Na3PO4–FePO4 and crystal structure of a new iron phosphate Na3Fe3(PO4)4 , 2002 .

[81]  M. Whittingham,et al.  New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties. , 2002, Inorganic chemistry.

[82]  Kazuyuki Suzuki,et al.  Synthesis of Nanocrystalline Fe 2 O 3 for Lithium Secondary Battery Cathode , 2002 .

[83]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[84]  Laurence Croguennec,et al.  On the metastable O2-type LiCoO2 , 2001 .

[85]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[86]  S. Polyakov,et al.  The Glaserite-like Structure of Double Sodium and Iron Phosphate Na3Fe(PO4)2 , 2001 .

[87]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[88]  J. Dahn,et al.  Can All the Lithium be Removed from T 2 ­ Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 ? , 2001 .

[89]  J. Dahn,et al.  Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2 , 2001 .

[90]  Caridad Ruiz-Valero,et al.  Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni) , 2001 .

[91]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[92]  J. Dahn,et al.  Layered T2-, O6-, O2-, and P2-Type A2/3[M‘2+1/3M4+2/3]O2 Bronzes, A = Li, Na; M‘ = Ni, Mg; M = Mn, Ti , 2000 .

[93]  J. Dahn,et al.  O 2‐Type Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries II. Structure, Composition, and Properties , 2000 .

[94]  L. Nazar,et al.  A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3 , 2000 .

[95]  J. Dahn,et al.  Layered Li‐Mn‐Oxide with the O2 Structure: A Cathode Material for Li‐Ion Cells Which Does Not Convert to Spinel , 1999 .

[96]  Y. Chiang,et al.  Electrochemical Cycling‐Induced Spinel Formation in High‐Charge‐Capacity Orthorhombic LiMnO2 , 1999 .

[97]  M. Tabuchi,et al.  Synthesis of LiMnO2 with α ‐ NaMnO2‐Type Structure by a Mixed‐Alkaline Hydrothermal Reaction , 1998 .

[98]  T. Ohzuku,et al.  Comparative study of Li[LixMn2 − xO4 and LT-LiMnO2 for lithium-ion batteries , 1997 .

[99]  Hajime Arai,et al.  Cathode performance and voltage estimation of metal trihalides , 1997 .

[100]  Y. Takeda,et al.  Preparation of LiFeO2 with Alpha‐ NaFeO2‐Type Structure Using a Mixed‐Alkaline Hydrothermal Method , 1997 .

[101]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[102]  O. Yakubovich,et al.  The mixed anionic framework in the structure of Na2{MnF[PO4]} , 1997 .

[103]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[104]  C. Delmas,et al.  A new variety of LiMnO2 with a layered structure , 1996 .

[105]  Thomas J. Richardson,et al.  Lithium insertion processes of orthorhombic Na{sub x}MnO{sub 2}-based electrode materials , 1996 .

[106]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[107]  K. Lii K3Fe3(PO4)4×H2O: An Iron(III) Phosphate with a Layer Structure. , 1996 .

[108]  Marca M. Doeff,et al.  Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries , 1994 .

[109]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[110]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[111]  J. Tarascon,et al.  Chemical and electrochemical insertion of Na into the spinel λ-MnO2 phase , 1992 .

[112]  Saitoh,et al.  Electronic structure of SrFe4+O3 and related Fe perovskite oxides. , 1992, Physical review. B, Condensed matter.

[113]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[114]  E. M. Holt,et al.  Crystal structures of two allotropic forms of Na2CoP2O7 , 1991 .

[115]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[116]  R. J. Bones,et al.  Development of a Ni , NiCl2 Positive Electrode for a Liquid Sodium (ZEBRA) Battery Cell , 1989 .

[117]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[118]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[119]  M. D. L. Rochère,et al.  Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3 : A = Li, Na, Ag, K ; M = Cr, Fe , 1983 .

[120]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[121]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[122]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[123]  M. Inagaki,et al.  A preparation and polymorphic relations of sodium iron oxide (NaFeO2) , 1980 .

[124]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[125]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[126]  P. Hagenmuller,et al.  Influence de l'environnement de l'ion alcalin sur sa mobilite dans les structures a feuillets Ax(LxM1−x)O2 , 1979 .

[127]  B. Hyde,et al.  Non-bonded interactions and the crystal chemistry of tetrahedral structures related to the wurtzite type (B4) , 1978 .

[128]  Y. L. Page,et al.  The crystal structure of the new mineral maricite, NaFePO 4 , 1977 .

[129]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[130]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[131]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[132]  P. Rüetschi Is the Lead‐Acid Storage Battery Obsolete? , 1961 .

[133]  A. D. Wadsley The crystal structure of psilomelane, (Ba, H2O)2Mn5O10 , 1953 .

[134]  Gerbrand Ceder,et al.  Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries , 2014 .

[135]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[136]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[137]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[138]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[139]  Matthew J. Rosseinsky,et al.  Advanced Functional Materials , 2011 .

[140]  S. Komaba,et al.  Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and α‐Fe2O3 for Rechargeable Batteries , 2010 .

[141]  Z. Sharp,et al.  THE CANADIAN MINERALOGIST , 2006 .

[142]  Jean Etourneau,et al.  A review of cation-ordered rock salt superstructureoxides , 2000 .

[143]  Y. Chiang,et al.  Stabilization of LiMnO2 in the α ‐ NaFeO2 Structure Type by LiAlO2 Addition , 1999 .

[144]  P. Hagenmuller,et al.  A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction , 1982 .

[145]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[146]  M. Takano,et al.  Preparation and characterization of stoichiometric CaFeO3 , 1978 .

[147]  Soichi Wakatsuki Acta Crystallographica , 1948, Nature.