Further results on (k, t)-subnormal covering codes

The concept of (k, t)-subnormal covering codes, is discussed generalizing some of the earlier results. In a similar way, (k, t)-normal covering codes are defined. Using the results, including some new constructions, upper bounds for covering codes are improved. It is shown how simulated annealing can be used to find acceptable partitions for codes. >

[1]  L. T. Wille The football pool problem for 6 matches: A new upper bound obtained by simulated annealing , 1987, J. Comb. Theory, Ser. A.

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Patric R. J. Östergård,et al.  Upper bounds for q-ary covering codes , 1991, IEEE Trans. Inf. Theory.

[4]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[5]  Iiro S. Honkala,et al.  Bounds for abnormal binary codes with covering radius one , 1991, IEEE Trans. Inf. Theory.

[6]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[7]  Heikki Hämäläinen,et al.  Upper bounds for football pool problems and mixed covering codes , 1991, J. Comb. Theory, Ser. A.

[8]  Antoine Lobstein,et al.  On normal and subnormal q-ary codes , 1989, IEEE Trans. Inf. Theory.

[9]  Patric R. J. Östergård,et al.  A new binary code of length 10 and covering radius 1 , 1991, IEEE Trans. Inf. Theory.

[10]  Gerhard J. M. van Wee Binary coveting codes are normal , 1990, IEEE Trans. Inf. Theory.

[11]  Iiro S. Honkala,et al.  Lower bounds for q-ary covering codes , 1990, IEEE Trans. Inf. Theory.

[12]  Lane A. Hemaspaandra,et al.  Using simulated annealing to design good codes , 1987, IEEE Trans. Inf. Theory.

[13]  Emile H. L. Aarts,et al.  New upper bounds for the football pool problem for 6, 7, and 8 matches , 1989, J. Comb. Theory, Ser. A.

[14]  Iiro S. Honkala,et al.  On (k, t) -subnormal covering codes , 1991, IEEE Trans. Inf. Theory.

[15]  Iiro S. Honkala,et al.  Modified bounds for coveting codes , 1991, IEEE Trans. Inf. Theory.

[16]  Wende Chen,et al.  New lower bounds for binary covering codes , 1988 .