Studies on Extremal Optimization and Its Applications in Solving RealWorld Optimization Problems

Recently, a local-search heuristic algorithm called extremal optimization (EO) has been proposed and successfully applied in some NP-hard combinatorial optimization problems. This paper presents an investigation on the fundamentals of EO with its applications in discrete and numerical optimization problems. The EO was originally developed from the fundamental of statistic physics. However, in this study we also explore the mechanism of EO from all three aspects: statistical physics, biological evolution or co-evolution and ecosystem. Furthermore, we introduce our contributions to the applications of EO in solving traveling salesman problem (TSP) and production scheduling, and multi-objective optimization problems with novel perspective in discrete and continuous search spaces, respectively. The simulation results demonstrate the competitive performance with EO optimization solutions due to its extremal dynamics mechanism

[1]  G. Abramson,et al.  Extremal coupled map lattices , 1999, adap-org/9905001.

[2]  Fabiano Luis de Sousa,et al.  Generalized extremal optimization: An application in heat pipe design , 2004 .

[3]  Roberto L. Galski,et al.  Spacecraft thermal design with the Generalized Extremal Optimization Algorithm , 2007 .

[4]  Michel Gendreau,et al.  The hot strip mill production scheduling problem: A tabu search approach , 1998, Eur. J. Oper. Res..

[5]  Stefan Boettcher,et al.  Extremal optimization at the phase transition of the three-coloring problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  E. Ahmed,et al.  On Multiobjective Evolution Model , 2004, nlin/0410052.

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Stefan Boettcher,et al.  Extremal Optimization: Methods derived from Co-Evolution , 1999, GECCO.

[9]  C. Adami,et al.  Self-organized criticality in living systems , 1994, adap-org/9401001.

[10]  Yu-Wang Chen,et al.  Hybrid evolutionary algorithm with marriage of genetic algorithm and extremal optimization for production scheduling , 2008 .

[11]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  Mohamed El Bachir Menai,et al.  Efficient Initial Solution to Extremal Optimization Algorithm for Weighted MAXSAT Problem , 2003, IEA/AIE.

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  dos Astronautas Function Optimization Using Extremal Dynamics , 2002 .

[15]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[16]  Stefan Boettcher,et al.  Extremal Optimization for the Sherrington-Kirkpatrick Spin Glass , 2004 .

[17]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[18]  Mohamed Fathey Elettreby Multiobjective Optimization Of An Extremal Evolution Model , 2005 .

[19]  Marc Schoenauer,et al.  ASCHEA: new results using adaptive segregational constraint handling , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[21]  Stephan Mertens,et al.  Phase transition in multiprocessor scheduling. , 2003, Physical review letters.

[22]  Tao Zhou,et al.  Continuous extremal optimization for Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[24]  Tim Hendtlass,et al.  Solving Problems with Hidden Dynamics – Comparison of Extremal Optimisation and Ant Colony System , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[25]  José Ignacio Hidalgo,et al.  A hybrid heuristic for the traveling salesman problem , 2001, IEEE Trans. Evol. Comput..

[26]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[27]  Dietrich Stauffer,et al.  Dynamics of a Simple Evolutionary Process , 2001, nlin/0107073.

[28]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[29]  Stefan Boettcher,et al.  Extremal Optimization: an Evolutionary Local-Search Algorithm , 2002, ArXiv.

[30]  Min-Rong Chen,et al.  Population-Based Extremal Optimization with Adaptive Lévy Mutation for Constrained Optimization , 2006, 2006 International Conference on Computational Intelligence and Security.

[31]  Stefan Boettcher,et al.  Optimization with Extremal Dynamics , 2000, Complex..

[32]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[33]  M. E. J. Newman,et al.  Comment on _Self-organized criticality in living systems_ by C. Adami , 1997 .

[34]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[35]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[36]  S. Boettcher Extremal optimization for Sherrington-Kirkpatrick spin glasses , 2004, cond-mat/0407130.

[37]  Stefan Boettcher,et al.  Combining local search with co-evolution in a remarkably simple way , 2000 .

[38]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[39]  Min-Rong Chen,et al.  Multiobjective optimization using population-based extremal optimization , 2008, Neural Computing and Applications.

[40]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..