Nonparametric D-R 1-R 2 distribution MRI of the living human brain

Diffusion-relaxation correlation NMR can simultaneously characterize both the microstructure and the local chemical composition of complex samples that contain multiple populations of water. Recent developments on tensor-valued diffusion encoding and Monte Carlo inversion algorithms have made it possible to transfer diffusion-relaxation correlation NMR from small-bore scanners to clinical MRI systems. Initial studies on clinical MRI systems employed 5D D-R1 and D-R2 correlation to characterize healthy brain in vivo. However, these methods are subject to an inherent bias that originates from not including R2 or R1 in the analysis, respectively. This drawback can be remedied by extending the concept to 6D D-R1-R2 correlation. In this work, we present a sparse acquisition protocol that records all data necessary for in vivo 6D D-R1-R2 correlation MRI across 633 individual measurements within 25 min-a time frame comparable to previous lower-dimensional acquisition protocols. The data were processed with a Monte Carlo inversion algorithm to obtain nonparametric 6D D-R1-R2 distributions. We validated the reproducibility of the method in repeated measurements of healthy volunteers. For a post-therapy glioblastoma case featuring cysts, edema, and partially necrotic remains of tumor, we present representative single-voxel 6D distributions, parameter maps, and artificial contrasts over a wide range of diffusion-, R1-, and R2-weightings based on the rich information contained in the D-R1-R2 distributions.

[1]  R. Mark Henkelman,et al.  Analysis of biological NMR relaxation data with continuous distributions of relaxation times , 1986 .

[2]  D. Woessner,et al.  N.M.R. SPIN-ECHO SELF-DIFFUSION MEASUREMENTS ON FLUIDS UNDERGOING RESTRICTED DIFFUSION , 1963 .

[3]  R. Turner,et al.  Diffusion MR imaging: clinical applications. , 1992, AJR. American journal of roentgenology.

[4]  Peter J. Basser,et al.  Magnetic resonance microdynamic imaging reveals distinct tissue microenvironments , 2017, NeuroImage.

[5]  Janez Stepišnik,et al.  Time-dependent self-diffusion by NMR spin-echo , 1993 .

[6]  D Gounot,et al.  In vivo determination of multiexponential T2 relaxation in the brain of patients with multiple sclerosis. , 1991, Magnetic resonance imaging.

[7]  Peter S. Belton,et al.  Proton N.M.R. studies of chemical and diffusive exchange in carbohydrate systems , 1989 .

[8]  Mario Bertero,et al.  On the recovery and resolution of exponential relaxation rates from experimental data: a singular-value analysis of the Laplace transform inversion in the presence of noise , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Michael Prange,et al.  Quantifying uncertainty in NMR T2 spectra using Monte Carlo inversion. , 2009, Journal of magnetic resonance.

[10]  B. Mädler,et al.  Quantitative T1‐mapping detects cloudy‐enhancing tumor compartments predicting outcome of patients with glioblastoma , 2016, Cancer medicine.

[11]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[12]  Carlo Pierpaoli,et al.  Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging , 2020, NeuroImage.

[13]  C. Sexton,et al.  Diffusion MRI , 2020, The Wiley Encyclopedia of Health Psychology.

[14]  Daniel Topgaard,et al.  Multidimensional diffusion MRI. , 2017, Journal of magnetic resonance.

[15]  M. Bronskill,et al.  Investigation of analysis techniques for complicated NMR relaxation data , 1991 .

[16]  Charles S. Johnson Effects of Chemical Exchange in Diffusion-Ordered 2D NMR Spectra , 1993 .

[17]  E. Akbudak,et al.  Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results , 1996, Magnetic resonance in medicine.

[18]  R. Deichmann,et al.  Quantitative T1 and T2 mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI , 2014, Neuroradiology.

[19]  C T Moonen,et al.  Unraveling diffusion constants in biological tissue by combining Carr‐Purcell‐Meiboom‐Gill imaging and pulsed field gradient NMR , 1996, Magnetic resonance in medicine.

[20]  David H. Laidlaw,et al.  Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI , 2008, NeuroImage.

[21]  P. V. van Zijl,et al.  Diffusion Weighting by the Trace of the Diffusion Tensor within a Single Scan , 1995, Magnetic resonance in medicine.

[22]  Ali R. Khan,et al.  Diffusion dispersion imaging: Mapping oscillating gradient spin‐echo frequency dependence in the human brain , 2019, Magnetic resonance in medicine.

[23]  Wibeke Nordhøy,et al.  Determination of water compartments in rat myocardium using combined D-T1 and T1-T2 experiments. , 2005, Magnetic resonance imaging.

[24]  Paul T. Callaghan,et al.  Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media , 2010 .

[25]  F. Szczepankiewicz,et al.  Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition (DIVIDE) imaging , 2021, European Radiology.

[26]  P. Mitra,et al.  Conventions and nomenclature for double diffusion encoding NMR and MRI , 2016, Magnetic resonance in medicine.

[27]  C. Tax Chapter 7. Estimating Chemical and Microstructural Heterogeneity by Correlating Relaxation and Diffusion , 2020 .

[28]  Carl-Fredrik Westin,et al.  Tensor‐valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors , 2019, Magnetic resonance in medicine.

[29]  Alex L. MacKay,et al.  Quantitative interpretation of NMR relaxation data , 1989 .

[30]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[31]  P. Basser,et al.  Analytical Expressions for the b Matrix in NMR Diffusion Imaging and Spectroscopy , 1994 .

[32]  Charles L. Epstein,et al.  The Bad Truth about Laplace's Transform , 2008, SIAM Rev..

[33]  Fan Zhang,et al.  Effects of echo time on diffusion quantification of brain white matter at 1.5T and 3.0T , 2009, Magnetic resonance in medicine.

[34]  A new framework for MR diffusion tensor distribution , 2021, Scientific reports.

[35]  Laurence H. Jackson,et al.  Combined diffusion‐relaxometry MRI to identify dysfunction in the human placenta , 2018, Magnetic resonance in medicine.

[36]  S. Lasič,et al.  Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. , 2013, Journal of magnetic resonance.

[37]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[38]  R. Peeters,et al.  Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI , 2015, Neurobiology of Aging.

[39]  M. Uder,et al.  Sample size estimation: Current practice and considerations for original investigations in MRI technical development studies , 2020, Magnetic resonance in medicine.

[40]  P. Basser,et al.  Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging , 2020, NeuroImage.

[41]  Daniel Topgaard Chapter 7:NMR Methods for Studying Microscopic Diffusion Anisotropy , 2016 .

[42]  K. N. Magdoom,et al.  A new framework for MR diffusion tensor distribution , 2020, Scientific Reports.

[43]  Roland Bammer,et al.  In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding , 2014, Magnetic resonance in medicine.

[44]  A. MacKay,et al.  Understanding aqueous and non-aqueous proton T1 relaxation in brain. , 2021, Journal of magnetic resonance.

[45]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[46]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[47]  K. Pruessmann,et al.  On the signal‐to‐noise ratio benefit of spiral acquisition in diffusion MRI , 2020, Magnetic resonance in medicine.

[48]  Derek K. Jones,et al.  Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI , 2020 .

[49]  D. Le Bihan,et al.  Diffusion/perfusion MR imaging of the brain: from structure to function. , 1990 .

[50]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[51]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[52]  Chun-Hung Yeh,et al.  MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation , 2019, NeuroImage.

[53]  João P de Almeida Martins,et al.  Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms , 2020, NMR in biomedicine.

[54]  Carl-Fredrik Westin,et al.  Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors , 2015, NeuroImage.

[55]  A. Elster,et al.  Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. , 1999, Radiology.

[56]  Yi-Qiao Song,et al.  Optimization of multidimensional MR data acquisition for relaxation and diffusion , 2020, NMR in biomedicine.

[57]  Ben Jeurissen,et al.  T1 relaxometry of crossing fibres in the human brain , 2016, NeuroImage.

[58]  G. Marsh,et al.  Multicomponent T2 relaxation of in vivo skeletal muscle , 1999, Magnetic resonance in medicine.

[59]  K. Pruessmann,et al.  Improved gradient waveforms for oscillating gradient spin‐echo (OGSE) diffusion tensor imaging , 2020, NMR in biomedicine.

[60]  D. Topgaard,et al.  Toward nonparametric diffusion‐T1 characterization of crossing fibers in the human brain , 2020, Magnetic resonance in medicine.

[61]  M. Bronskill,et al.  T1, T2 relaxation and magnetization transfer in tissue at 3T , 2005, Magnetic resonance in medicine.

[62]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[63]  D. Vandusschoten,et al.  Extracting diffusion constants from echo-time-dependent PFG NMR data using relaxation-time information. , 1995 .

[64]  Geoffrey S Young,et al.  Advanced MRI of adult brain tumors. , 2007, Neurologic clinics.

[65]  Peled Water diffusion, T(2) and compartmentation in frog sciatic nerve , 2000, Magnetic resonance in medicine.

[66]  Jeff H. Duyn,et al.  Micro-compartment specific T2 ⁎ relaxation in the brain , 2013, NeuroImage.

[67]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[68]  P. Basser,et al.  The b matrix in diffusion tensor echo‐planar imaging , 1997, Magnetic resonance in medicine.

[69]  Dan Benjamini,et al.  Chapter 10. Nonparametric Inversion of Relaxation and Diffusion Correlation Data , 2020 .

[70]  J. Gillard,et al.  Imaging biomarkers of brain tumour margin and tumour invasion. , 2011, The British journal of radiology.

[71]  Dan Benjamini,et al.  Multidimensional correlation MRI , 2020, NMR in biomedicine.

[72]  J. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. , 2020, Neuro-oncology.

[73]  Carl-Fredrik Westin,et al.  Q-space trajectory imaging for multidimensional diffusion MRI of the human brain , 2016, NeuroImage.

[74]  J. Veraart,et al.  Characterization of Prostate Microstructure Using Water Diffusion and NMR Relaxation , 2018, Front. Phys..

[75]  P. Basser,et al.  Diffuse axonal injury has a characteristic multidimensional MRI signature in the human brain. , 2021, Brain : a journal of neurology.

[76]  Carl-Fredrik Westin,et al.  NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. , 2015, The Journal of chemical physics.

[77]  M. Uder,et al.  Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging. , 2020, Zeitschrift fur medizinische Physik.

[78]  Eva Forssell-Aronsson,et al.  Model-free approach to the interpretation of restricted and anisotropic self-diffusion in magnetic resonance of biological tissues , 2021, 2111.07827.

[79]  Jelle Veraart,et al.  TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times , 2017, NeuroImage.

[80]  Ravinath Kausik,et al.  Chapter 4:Two-dimensional NMR of Diffusion and Relaxation , 2016 .

[81]  Stefan Klein,et al.  Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease , 2013, Front. Neuroinform..

[82]  S. Price,et al.  Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement , 2019, Therapeutic advances in neurological disorders.

[83]  Carl-Fredrik Westin,et al.  Constrained optimization of gradient waveforms for generalized diffusion encoding. , 2015, Journal of magnetic resonance.

[84]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[85]  Holden H. Wu,et al.  Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology. , 2020, Radiology.

[86]  João P de Almeida Martins,et al.  Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials , 2018, Scientific Reports.

[87]  J. Helpern,et al.  Monte Carlo study of a two‐compartment exchange model of diffusion , 2010, NMR in biomedicine.

[88]  Rachid Deriche,et al.  Towards quantitative connectivity analysis: reducing tractography biases , 2014, NeuroImage.

[89]  L. Gladden,et al.  Numerical estimation of relaxation and diffusion distributions in two dimensions. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[90]  J. Kärger Zur Bestimmung der Diffusion in einem Zweibereichsystem mit Hilfe von gepulsten Feldgradienten , 1969 .

[91]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[92]  Yvonne W. Lui,et al.  Training a neural network for Gibbs and noise removal in diffusion MRI , 2019, Magnetic resonance in medicine.

[93]  Alan Connelly,et al.  MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation , 2019, NeuroImage.

[94]  Derek K. Jones,et al.  Computing and visualising intra‐voxel orientation‐specific relaxation–diffusion features in the human brain , 2020, Human brain mapping.

[95]  Ferenc A. Jolesz,et al.  Water diffusion, T2, and compartmentation in frog sciatic nerve , 1999 .

[96]  E. Fieremans,et al.  Removal of partial Fourier‐induced Gibbs (RPG) ringing artifacts in MRI , 2021, Magnetic resonance in medicine.

[97]  M. Maier Quantitative MRI of the brain—measuring changes caused by disease , 2004 .

[98]  Daan Christiaens,et al.  Integrated and efficient diffusion-relaxometry using ZEBRA , 2018, Scientific Reports.

[99]  J. Wisnowski,et al.  Diffusion‐relaxation correlation spectroscopic imaging: A multidimensional approach for probing microstructure , 2017, Magnetic resonance in medicine.

[100]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[101]  G. Lindstrom,et al.  Some preliminary observations on the proton magnetic resonance in biologic samples. , 1955, Acta radiologica.

[102]  Wolfhard Semmler,et al.  Multiexponential Proton Spin‐Spin Relaxation in MR Imaging of Human Brain Tumors , 1989, Journal of computer assisted tomography.

[103]  D. Topgaard,et al.  Massively Multidimensional Diffusion-Relaxation Correlation MRI , 2022, Frontiers in Physics.

[104]  Jesús Pacheco-Torres,et al.  Dynamic oxygen challenge evaluated by NMR T1 and T2* – insights into tumor oxygenation , 2015, NMR in biomedicine.

[105]  A. Istratov,et al.  Exponential analysis in physical phenomena , 1999 .

[106]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[107]  Derek K. Jones,et al.  Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI , 2019, Magnetic resonance.

[108]  S. T. Nichols,et al.  Quantitative evaluation of several partial fourier reconstruction algorithms used in mri , 1993, Magnetic resonance in medicine.

[109]  P. Callaghan,et al.  Diffusion-diffusion correlation and exchange as a signature for local order and dynamics. , 2004, The Journal of chemical physics.

[110]  Bram Stieltjes,et al.  Flow‐compensated intravoxel incoherent motion diffusion imaging , 2015, Magnetic resonance in medicine.

[111]  Daniel Topgaard,et al.  NMR diffusion and relaxation correlation methods: New insights in heterogeneous materials , 2013 .

[112]  D. Topgaard Multiple dimensions for random walks. , 2019, Journal of magnetic resonance.

[113]  Dan Benjamini,et al.  Retaining information from multidimensional correlation MRI using a spectral regions of interest generator , 2020, Scientific Reports.

[114]  Stamatios N. Sotiropoulos,et al.  Improved fibre dispersion estimation using b-tensor encoding , 2019, NeuroImage.

[115]  T. Mikkelsen,et al.  Role of MRI in primary brain tumor evaluation. , 2014, Journal of the National Comprehensive Cancer Network : JNCCN.

[116]  B. Blümich,et al.  Spatially resolved D-T(2) correlation NMR of porous media. , 2014, Journal of magnetic resonance.

[117]  Daniel Topgaard,et al.  Diffusion tensor distribution imaging , 2019, NMR in biomedicine.

[118]  B. Halle Molecular theory of field‐dependent proton spin‐lattice relaxation in tissue , 2006, Magnetic resonance in medicine.

[119]  Daeun Kim,et al.  Multidimensional correlation spectroscopic imaging of exponential decays: From theoretical principles to in vivo human applications , 2018, NMR in biomedicine.

[120]  Sebastian Bickelhaupt,et al.  Tumor Infiltration in Enhancing and Non-Enhancing Parts of Glioblastoma: A Correlation with Histopathology , 2017, PloS one.

[121]  Joseph V. Hajnal,et al.  Complex diffusion-weighted image estimation via matrix recovery under general noise models , 2018, NeuroImage.

[122]  Ben Jeurissen,et al.  Diffusion MRI fiber tractography of the brain , 2019, NMR in biomedicine.

[123]  F. Ståhlberg,et al.  Evaluating the accuracy and precision of a two-compartment Kärger model using Monte Carlo simulations. , 2010, Journal of magnetic resonance.

[124]  Derek K. Jones,et al.  Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion‐weighted acquisitions , 2015, Magnetic resonance in medicine.

[125]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[126]  A. Reymbaut,et al.  Resolving orientation-specific diffusion-relaxation features via Monte-Carlo density-peak clustering in heterogeneous brain tissue , 2020 .

[127]  V. Kiselev,et al.  On modeling , 2018, Magnetic resonance in medicine.

[128]  D. Topgaard,et al.  Multidimensional Diffusion Magnetic Resonance Imaging for Characterization of Tissue Microstructure in Breast Cancer Patients: A Prospective Pilot Study , 2021, Cancers.

[129]  Thorsten Feiweier,et al.  Effect of myelin water exchange on DTI‐derived parameters in diffusion MRI: Elucidation of TE dependence , 2018, Magnetic resonance in medicine.

[130]  F. Szczepankiewicz,et al.  Extrapolation-Based References Improve Motion and Eddy-Current Correction of High B-Value DWI Data: Application in Parkinson’s Disease Dementia , 2015, PloS one.

[131]  P. Callaghan,et al.  Diffusion correlation NMR spectroscopic study of anisotropic diffusion of water in plant tissues. , 2005, Biophysical journal.

[132]  Felix Breuer,et al.  Simultaneous multislice (SMS) imaging techniques , 2015, Magnetic resonance in medicine.

[133]  Christian Beaulieu,et al.  Oscillating gradient spin‐echo (OGSE) diffusion tensor imaging of the human brain , 2014, Magnetic resonance in medicine.

[134]  D L Parker,et al.  Comparison of gradient encoding schemes for diffusion‐tensor MRI , 2001, Journal of magnetic resonance imaging : JMRI.

[135]  R. Henkelman,et al.  Quantitative Two‐Dimensional time Correlation Relaxometry , 1991, Magnetic resonance in medicine.