Simulated annealing and object point processes: Tools for analysis of spatial patterns

Abstract This paper introduces a three-dimensional object point process—the Bisous model—that can be used as a prior for three-dimensional spatial pattern analysis. Maximization of likelihood or penalized-likelihood functions based on this model requires global optimization techniques, such as the simulated annealing algorithm. Theoretical properties of the model are discussed and the convergence of the proposed optimization method is proved. Finally, a simulation study is presented.

[1]  Geoff K. Nicholls,et al.  Perfect simulation for sample-based inference , 1999 .

[2]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[3]  Håvard Rue,et al.  Bayesian object recognition with baddeley's delta loss , 1998, Advances in Applied Probability.

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  M. Lachièze‐Rey,et al.  Statistics of the galaxy distribution , 1989 .

[6]  Josiane Zerubia,et al.  A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing , 2002 .

[7]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[8]  Josiane Zerubia,et al.  A RJMCMC Algorithm for Object Processes in Image Processing , 2001, Monte Carlo Methods Appl..

[9]  Merrilee Hurn,et al.  Bayesian object identification , 1999 .

[10]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[11]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[12]  Håvard Rue,et al.  Identification of partly destroyed objects using deformable templates , 1998, Stat. Comput..

[13]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[14]  B. Ripley,et al.  Markov Point Processes , 1977 .

[15]  Eva B. Vedel Jensen,et al.  Inhomogeneous spatial point processes by location-dependent scaling , 2003, Advances in Applied Probability.

[16]  Josiane Zerubia,et al.  A Gibbs Point Process for Road Extraction from Remotely Sensed Images , 2004, International Journal of Computer Vision.

[17]  S. Mase,et al.  Packing Densities and Simulated Tempering for Hard Core Gibbs Point Processes , 2001 .

[18]  M. N. M. van Lieshout,et al.  Perfect simulation for marked point processes , 2006, Comput. Stat. Data Anal..

[19]  Radu Stoica,et al.  The Candy model: properties and inference , 2003 .

[20]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[21]  Jesper Møller,et al.  Bayesian contour detection in a time series of ultrasound images through dynamic deformable template models. , 2002, Biostatistics.

[22]  M LieshoutvanM.N.,et al.  The Candy model revisited: Markov properties and inference , 2001 .

[23]  J. Mateu,et al.  Detection of cosmic filaments using the Candy model , 2004, astro-ph/0405370.

[24]  P. Green,et al.  Boundary detection through dynamic polygons , 1998 .

[25]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[26]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Josiane Zerubia,et al.  Building extraction from digital elevation models , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[28]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[29]  van Marie-Colette Lieshout,et al.  Stochastic annealing for nearest-neighbour point processes with application to object recognition , 1994, Advances in Applied Probability.

[30]  Radu Stoica Processus ponctuels pour l'extraction de réseaux linéi͏̈ques dans les images satellitaires et aériennes , 2001 .

[31]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[32]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[33]  Simulated annealing with Tsallis weights for a system of interacting hard spheres , 2002 .

[34]  David Ruelle,et al.  Some remarks on the ground state of infinite systems in statistical mechanics , 1969 .

[35]  C. Geyer,et al.  Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .