Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk

In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid–structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi:10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.

[1]  D. Levy,et al.  Survival After the Onset of Congestive Heart Failure in Framingham Heart Study Subjects , 1993, Circulation.

[2]  D. Mozaffarian,et al.  Executive summary: heart disease and stroke statistics--2010 update: a report from the American Heart Association. , 2010, Circulation.

[3]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[4]  L. Miller,et al.  Left ventricular assist devices are underutilized. , 2011, Circulation.

[5]  J. Dennis,et al.  Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation , 2007, Journal of Fluid Mechanics.

[6]  U. Heinzmann,et al.  Residence Time in Niches of Stagnant Flow Determines Fibrin Clot Formation in an Arterial Branching Model - Detailed Flow Analysis and Experimental Results , 1995, Thrombosis and Haemostasis.

[7]  Sarah Furness,et al.  The Berlin Heart EXCOR Pediatrics-The SickKids Experience 2004-2008. , 2010, Artificial organs.

[8]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[9]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[10]  J. Ortega,et al.  Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam , 2012, Annals of Biomedical Engineering.

[11]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[12]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[13]  János Józsa,et al.  ASSESSING WATER EXCHANGE MECHANISMS IN COMPLEX LAKE AND COASTAL FLOWS BY MODELLING THE SPATIAL DISTRIBUTION OF MEAN RESIDENCE TIME , 2001 .

[14]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[15]  Charles Audet Convergence Results for Generalized Pattern Search Algorithms are Tight , 2004 .

[16]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[17]  C. Canter,et al.  Biventricular Assist Devices as a Bridge to Heart Transplantation in Small Children , 2008, Circulation.

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[20]  Tain-Yen Hsia,et al.  A non-discrete method for computation of residence time in fluid mechanics simulations. , 2013, Physics of fluids.

[21]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[22]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[23]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[24]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[25]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[26]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[27]  M. Heinkenschloss,et al.  Shape optimization in steady blood flow: A numerical study of non-Newtonian effects , 2005, Computer methods in biomechanics and biomedical engineering.

[28]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[29]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[30]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[31]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[32]  J F Antaki,et al.  Computational fluid dynamics as a development tool for rotary blood pumps. , 2001, Artificial organs.

[33]  Alison L. Marsden,et al.  Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise , 2010 .

[34]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[35]  Meng Wang,et al.  Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework , 2003 .

[36]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[37]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[38]  Yuri Bazilevs,et al.  Fluid–structure interaction simulation of pulsatile ventricular assist devices , 2013, Computational Mechanics.

[39]  Chandler Davis THEORY OF POSITIVE LINEAR DEPENDENCE. , 1954 .

[40]  Akif Ündar,et al.  Mechanical Circulatory Support for End-Stage Heart Failure in Repaired and Palliated Congenital Heart Disease , 2011, Current cardiology reviews.

[41]  John E. Dennis,et al.  A framework for managing models in nonlinear optimization of computationally expensive functions , 1999 .

[42]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[43]  W. Morrow,et al.  Preliminary Single Center North American Experience With The Berlin Heart Pediatric EXCOR Device , 2008, ASAIO journal.

[44]  Danny Bluestein,et al.  Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus , 1997, Annals of Biomedical Engineering.

[45]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[46]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[47]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[48]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[49]  A. L. Marsden,et al.  Computation of residence time in the simulation of pulsatile ventricular assist devices , 2014 .

[50]  Alison L. Marsden,et al.  Optimization of shunt placement for the Norwood surgery using multi-domain modeling. , 2012, Journal of biomechanical engineering.

[51]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[52]  J F Antaki,et al.  Computational flow optimization of rotary blood pump components. , 1995, Artificial organs.

[53]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[54]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[55]  Michael Schäfer,et al.  A numerical approach for shape optimization of fluid flow domains , 2005 .

[56]  Alison L. Marsden,et al.  A computational framework for derivative-free optimization of cardiovascular geometries , 2008 .

[57]  V. L. Rayz,et al.  Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms , 2010, Annals of Biomedical Engineering.

[58]  Charles Audet,et al.  Convergence Results for Pattern Search Algorithms are Tight , 2002 .

[59]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[60]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[61]  Tayfun E. Tezduyar,et al.  Estimation of element-based zero-stress state for arterial FSI computations , 2014 .

[62]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[63]  Ryutaro Himeno,et al.  Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms , 2004, Journal of Artificial Organs.

[64]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[65]  T. Timek,et al.  Pneumatic paracorporeal ventricular assist device in infants and children: initial Stanford experience. , 2007, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[66]  Parviz Moin,et al.  Suppression of vortex-shedding noise via derivative-free shape optimization , 2004 .

[67]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[68]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..