Spike propagation in dendrites with stochastic ion channels

We investigate the effects of the stochastic nature of ion channels on the faithfulness, precision and reproducibility of electrical signal transmission in weakly active, dendritic membrane under in vitro conditions. The properties of forward and backpropagating action potentials (BPAPs) in the dendritic tree of pyramidal cells are the subject of intense empirical work and theoretical speculation (Larkum et al., 1999; Zhu, 2000; Larkum et al., 2001; Larkum and Zhu, 2002; Schaefer et al., 2003; Williams, 2004; Waters et al., 2005). We numerically simulate the effects of stochastic ion channels on the forward and backward propagation of dendritic spikes in Monte-Carlo simulations on a reconstructed layer 5 pyramidal neuron. We report that in most instances there is little variation in timing or amplitude for a single BPAP, while variable backpropagation can occur for trains of action potentials. Additionally, we find that the generation and forward propagation of dendritic Ca2+ spikes are susceptible to channel variability. This indicates limitations on computations that depend on the precise timing of Ca2+ spikes.

[1]  J. White,et al.  Channel noise in neurons , 2000, Trends in Neurosciences.

[2]  Christof Koch,et al.  Intrinsic Noise in Cultured Hippocampal Neurons: Experiment and Modeling , 2004, The Journal of Neuroscience.

[3]  S Trojan,et al.  Model of spike propagation reliability along the myelinated axon corrupted by axonal intrinsic noise sources. , 2002, Physiological research.

[4]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[5]  Yo Horikawa,et al.  Noise effects on spike propagation in the stochastic Hodgkin-Huxley models , 1991, Biological Cybernetics.

[6]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[7]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[8]  A. Alonso,et al.  Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. , 1998, Journal of neurophysiology.

[9]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[10]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[11]  T. Sejnowski,et al.  LETTERS TO NATURE , 1996 .

[12]  Andreas T. Schaefer,et al.  Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. , 2003, Journal of neurophysiology.

[13]  L. Walløe,et al.  Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. , 1979, Acta physiologica Scandinavica.

[14]  C. Lüscher,et al.  Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation. , 1994, Journal of neurophysiology.

[15]  Mark C. W. van Rossum,et al.  Effects of noise on the spike timing precision of retinal ganglion cells. , 2003, Journal of neurophysiology.

[16]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[17]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[18]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[19]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[20]  Christof Koch,et al.  Subthreshold Voltage Noise Due to Channel Fluctuations in Active Neuronal Membranes , 2000, Journal of Computational Neuroscience.

[21]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[22]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[23]  Terrence J. Sejnowski,et al.  Modeling active dendritic processes in pyramidal neurons , 1998 .

[24]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[25]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Y. Horikawa,et al.  Simulation study on effects of channel noise on differential conduction at an axon branch. , 1993, Biophysical journal.

[27]  Louis J. DeFelice,et al.  Introduction to membrane noise , 1981 .

[28]  S. W. Jones,et al.  Calcium Channels: Unanswered Questions , 2003, Journal of bioenergetics and biomembranes.

[29]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[30]  Idan Segev,et al.  Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing , 1998, Neural Computation.

[31]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[32]  D. Prince,et al.  Development of BK channels in neocortical pyramidal neurons. , 1996, Journal of neurophysiology.

[33]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[34]  D. Debanne Information processing in the axon , 2004, Nature Reviews Neuroscience.

[35]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[36]  Christof Koch,et al.  Subthreshold voltage noise of rat neocortical pyramidal neurones , 2005, The Journal of physiology.

[37]  Michael Rudolph,et al.  A Fast-Conducting, Stochastic Integrative Mode for Neocortical Neurons InVivo , 2003, The Journal of Neuroscience.

[38]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[39]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[40]  Christof Koch,et al.  Detecting and Estimating Signals in Noisy Cable Structures, II: Information Theoretical Analysis , 1999, Neural Computation.

[41]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[42]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[43]  Carson C. Chow,et al.  Spontaneous action potentials due to channel fluctuations. , 1996, Biophysical journal.

[44]  D. Johnston,et al.  Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. , 2003, Journal of neurophysiology.

[45]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[46]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[47]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[48]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[49]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[50]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[51]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[52]  Stephen R. Williams,et al.  Spatial compartmentalization and functional impact of conductance in pyramidal neurons , 2004, Nature Neuroscience.

[53]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[54]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  G. Buzsáki,et al.  Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Aldo Faisal,et al.  Channel noise limits the minimum diameter of axons , 2002 .