Whole genome duplications have provided teleosts with many roads to peptide loaded MHC class I molecules

[1]  S. Stevanović,et al.  TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway , 2017, eLife.

[2]  P. van Endert,et al.  ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing , 2016, Scientific Reports.

[3]  Ross N. W. Kettleborough,et al.  Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution , 2016, Proceedings of the National Academy of Sciences.

[4]  Steven J. M. Jones,et al.  The Atlantic salmon genome provides insights into rediploidization , 2016, Nature.

[5]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[6]  Bronwen L. Aken,et al.  The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons , 2016, Nature Genetics.

[7]  D. Margulies,et al.  Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing , 2016, Proceedings of the National Academy of Sciences.

[8]  J. Kaufman,et al.  Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity , 2015, Proceedings of the National Academy of Sciences.

[9]  Søren Buus,et al.  Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding , 2015, eLife.

[10]  B. Koop,et al.  A comprehensive analysis of teleost MHC class I sequences , 2015, BMC Evolutionary Biology.

[11]  J. Trowsdale,et al.  TAPBPR: a new player in the MHC class I presentation pathway. , 2015, Tissue antigens.

[12]  B. Koop,et al.  The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei , 2014, PloS one.

[13]  P. Cascio PA28αβ: The Enigmatic Magic Ring of the Proteasome? , 2014, Biomolecules.

[14]  D. Chalopin,et al.  The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates , 2014, Nature Communications.

[15]  I. Johnston,et al.  A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification , 2014, Proceedings of the Royal Society B: Biological Sciences.

[16]  M. Miya,et al.  Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. , 2013, Gene.

[17]  P. Pereira,et al.  Two thioredoxin-superfamily members from sea bass (Dicentrarchus labrax, L.): characterization of PDI (PDIA1) and ERp57 (PDIA3). , 2013, Fish & shellfish immunology.

[18]  T. Elliott,et al.  A Mechanistic Basis for the Co-evolution of Chicken Tapasin and Major Histocompatibility Complex Class I (MHC I) Proteins* , 2013, The Journal of Biological Chemistry.

[19]  N. Bols,et al.  Rainbow trout (Oncorhynchus mykiss) contain two calnexin genes which encode distinct proteins , 2013, Developmental & Comparative Immunology.

[20]  N. Bols,et al.  The cloning and inducible expression of the rainbow trout ERp57 gene. , 2013, Fish & shellfish immunology.

[21]  L. Bernatchez,et al.  Framing the Salmonidae Family Phylogenetic Portrait: A More Complete Picture from Increased Taxon Sampling , 2012, PloS one.

[22]  G. Yoshizaki,et al.  Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. , 2012, Molecular biology and evolution.

[23]  Peter C. Wainwright,et al.  Resolution of ray-finned fish phylogeny and timing of diversification , 2012, Proceedings of the National Academy of Sciences.

[24]  J. Neefjes,et al.  Towards a systems understanding of MHC class I and MHC class II antigen presentation , 2011, Nature Reviews Immunology.

[25]  H. Mitani,et al.  Retained orthologous relationships of the MHC Class I genes during euteleost evolution. , 2011, Molecular biology and evolution.

[26]  G. Kozlov,et al.  Structural basis of carbohydrate recognition by calreticulin , 2011 .

[27]  J. Kaufman,et al.  The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes , 2011, Proceedings of the National Academy of Sciences.

[28]  Zhanjiang Liu,et al.  Molecular responses of calreticulin genes to iron overload and bacterial challenge in channel catfish (Ictalurus punctatus). , 2011, Developmental and comparative immunology.

[29]  L. Lybarger,et al.  Distinct Functions for the Glycans of Tapasin and Heavy Chains in the Assembly of MHC Class I Molecules , 2011, The Journal of Immunology.

[30]  R. Tampé,et al.  Conformation of peptides bound to the transporter associated with antigen processing (TAP) , 2011, Proceedings of the National Academy of Sciences.

[31]  M. Nonaka,et al.  Transspecies dimorphic allelic lineages of the proteasome subunit β-type 8 gene (PSMB8) in the teleost genus Oryzias , 2010, Proceedings of the National Academy of Sciences.

[32]  I. Hirono,et al.  Identification of two distinct types of beta-2 microglobulin in marine fish, Pagrus major and Seriola quinqueradiata. , 2010, Veterinary immunology and immunopathology.

[33]  B. Koop,et al.  Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon , 2010, BMC Genomics.

[34]  M. Nonaka,et al.  Evolutionary analysis of two classical MHC class I loci of the medaka fish, Oryzias latipes: haplotype-specific genomic diversity, locus-specific polymorphisms, and interlocus homogenization , 2010, Immunogenetics.

[35]  Karin M Reinisch,et al.  Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. , 2009, Immunity.

[36]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[37]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[38]  Stephen C. Kales,et al.  Calreticulin in rainbow trout: a limited response to endoplasmic reticulum (ER) stress. , 2007, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[39]  B. Koop,et al.  Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar) , 2007, BMC Genomics.

[40]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[41]  R. Tampé,et al.  The first N‐terminal transmembrane helix of each subunit of the antigenic peptide transporter TAP is essential for independent tapasin binding , 2006, FEBS letters.

[42]  K. Paulsson,et al.  The Double Lysine Motif of Tapasin Is a Retrieval Signal for Retention of Unstable MHC Class I Molecules in the Endoplasmic Reticulum1 , 2006, The Journal of Immunology.

[43]  Y. Palti,et al.  Identification and regulatory analysis of rainbow trout tapasin and tapasin-related genes , 2006, Immunogenetics.

[44]  N. Shimizu,et al.  Unprecedented intraspecific diversity of the MHC class I region of a teleost medaka, Oryzias latipes , 2005, Immunogenetics.

[45]  M. Ototake,et al.  New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. , 2005, Fish & shellfish immunology.

[46]  Jerzy K. Kulski,et al.  Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry , 2005, Immunogenetics.

[47]  P. Parham,et al.  The β2-Microglobulin Locus of Rainbow Trout (Oncorhynchus mykiss) Contains Three Polymorphic Genes1 , 2004, The Journal of Immunology.

[48]  M. Flajnik,et al.  Two highly divergent ancient allelic lineages of the transporter associated with antigen processing (TAP) gene in Xenopus: further evidence for co‐evolution among MHC class I region genes , 2003, European journal of immunology.

[49]  John Sidney,et al.  Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules , 2003, Bioinform..

[50]  Unni Grimholt,et al.  MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci , 2003, Immunogenetics.

[51]  J. Adams,et al.  The proteasome: structure, function, and role in the cell. , 2003, Cancer treatment reviews.

[52]  I. Wilson,et al.  Crystal structures of two rat MHC class Ia (RT1-A) molecules that are associated differentially with peptide transporter alleles TAP-A and TAP-B. , 2002, Journal of molecular biology.

[53]  J. Trowsdale,et al.  A human TAPBP (TAPASIN)‐related gene, TAPBP‐R , 2002, European journal of immunology.

[54]  N. Shimizu,et al.  Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka (Oryzias latipes) , 2002, Immunogenetics.

[55]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[56]  P. Parham,et al.  Modes of Salmonid MHC Class I and II Evolution Differ from the Primate Paradigm1 , 2001, The Journal of Immunology.

[57]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[58]  M. Flajnik,et al.  Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus , 2000, Immunogenetics.

[59]  P. Cresswell,et al.  The nature of the MHC class I peptide loading complex , 1999, Immunological reviews.

[60]  S. Beck,et al.  Gene organisation determines evolution of function in the chicken MHC , 1999, Immunological reviews.

[61]  P. Cresswell,et al.  HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. , 1998, Immunity.

[62]  E. Joly,et al.  Co-evolution of rat TAP transporters and MHC class I RT1-A molecules , 1998, Current Biology.

[63]  S Uebel,et al.  Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Nijenhuis,et al.  Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site. , 1996, Journal of immunology.

[65]  J. Hansen,et al.  Conservation of an alpha 2 domain within the teleostean world, MHC class I from the rainbow trout Oncorhynchus mykiss. , 1996, Developmental and comparative immunology.

[66]  P. Cresswell,et al.  Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. , 1996, Immunity.

[67]  P. Parham,et al.  Unexpected beta2-microglobulin sequence diversity in individual rainbow trout. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A Sette,et al.  The peptide-binding motif for the human transporter associated with antigen processing , 1995, The Journal of experimental medicine.

[69]  M. Flajnik,et al.  Isolation of Xenopus LMP-7 homologues. Striking allelic diversity and linkage to MHC. , 1995, Journal of immunology.

[70]  R. Tampé,et al.  A sequential model for peptide binding and transport by the transporters associated with antigen processing. , 1994, Immunity.

[71]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[72]  F. Lemonnier,et al.  β2-Microglobulin restriction of antigen presentation , 1990, Nature.

[73]  M. Groettrup,et al.  No evidence for immunoproteasomes in chicken lymphoid organs and activated lymphocytes , 2014, Immunogenetics.

[74]  Sanjeeva J. Wijeyesakere,et al.  Calreticulin in the immune system: ins and outs. , 2013, Trends in immunology.

[75]  D. Ferrington,et al.  Immunoproteasomes: structure, function, and antigen presentation. , 2012, Progress in molecular biology and translational science.

[76]  Stephen C. Kales,et al.  Molecular cloning and characterization of calreticulin from rainbow trout (Oncorhynchus mykiss) , 2003, Immunogenetics.

[77]  P. Cresswell,et al.  Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. , 2002, Immunity.

[78]  F. Lemonnier,et al.  Beta 2-microglobulin restriction of antigen presentation. , 1990, Nature.