Bayesian estimation of incompletely observed diffusions
暂无分享,去创建一个
[1] Christiane Fuchs,et al. Inference for Diffusion Processes , 2013 .
[2] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[3] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[4] G. Roberts,et al. Data Augmentation for Diffusions , 2013 .
[5] A. Gallant,et al. Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .
[6] P. Imkeller,et al. Additional logarithmic utility of an insider , 1998 .
[7] G. Roberts,et al. On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .
[8] Bjørn Eraker. MCMC Analysis of Diffusion Models With Application to Finance , 2001 .
[9] Darren J. Wilkinson,et al. Markov Chain Monte Carlo Algorithms for SDE Parameter Estimation , 2010, Learning and Inference in Computational Systems Biology.
[10] J. David Logan,et al. Applications in the Life Sciences , 2015 .
[11] Michael Sørensen,et al. Importance sampling techniques for estimation of diffusion models , 2012 .
[12] P. Fearnhead,et al. Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .
[13] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[14] Rong Chen,et al. On Generating Monte Carlo Samples of Continuous Diffusion Bridges , 2010 .
[15] Neil D. Lawrence,et al. Learning and Inference in Computational Systems Biology , 2010, Computational molecular biology.
[16] Darren J. Wilkinson,et al. Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..
[17] Jean-Louis Marchand. Conditionnement de processus markoviens , 2012 .
[18] Harry van Zanten,et al. Guided proposals for simulating multi-dimensional diffusion bridges , 2013, 1311.3606.
[19] T. Jeulin. Semi-Martingales et Grossissement d’une Filtration , 1980 .
[20] F. Meulen,et al. Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals , 2014, Electronic Journal of Statistics.
[21] Mogens Bladt,et al. Corrigendum to “Simple simulation of diffusion bridges with application to likelihood inference for diffusions” , 2010, Bernoulli.
[22] J. Jacod,et al. Grossissement initial, hypothese (H′) et theoreme de Girsanov , 1985 .
[23] Fabrice Baudoin,et al. Conditioned stochastic differential equations: theory, examples and application to finance , 2002 .
[24] Gareth O. Roberts,et al. Importance sampling techniques for estimation of diffusion models , 2009 .
[25] N. Shephard,et al. Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .
[26] B. Delyon,et al. Simulation of conditioned diffusion and application to parameter estimation , 2006 .
[27] M. Pitt,et al. Likelihood based inference for diffusion driven models , 2004 .
[28] M. Aschwanden. Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.