Bayesian estimation of incompletely observed diffusions

Abstract We present a general framework for Bayesian estimation of incompletely observed multivariate diffusion processes. Observations are assumed to be discrete in time, noisy and incomplete. We assume the drift and diffusion coefficient depend on an unknown parameter. A data-augmentation algorithm for drawing from the posterior distribution is presented which is based on simulating diffusion bridges conditional on a noisy incomplete observation at an intermediate time. The dynamics of such filtered bridges are derived and it is shown how these can be simulated using a generalised version of the guided proposals introduced in Schauer, Van der Meulen and Van Zanten (2017, Bernoulli 23(4A)).

[1]  Christiane Fuchs,et al.  Inference for Diffusion Processes , 2013 .

[2]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[3]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[4]  G. Roberts,et al.  Data Augmentation for Diffusions , 2013 .

[5]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[6]  P. Imkeller,et al.  Additional logarithmic utility of an insider , 1998 .

[7]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[8]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[9]  Darren J. Wilkinson,et al.  Markov Chain Monte Carlo Algorithms for SDE Parameter Estimation , 2010, Learning and Inference in Computational Systems Biology.

[10]  J. David Logan,et al.  Applications in the Life Sciences , 2015 .

[11]  Michael Sørensen,et al.  Importance sampling techniques for estimation of diffusion models , 2012 .

[12]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[13]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[14]  Rong Chen,et al.  On Generating Monte Carlo Samples of Continuous Diffusion Bridges , 2010 .

[15]  Neil D. Lawrence,et al.  Learning and Inference in Computational Systems Biology , 2010, Computational molecular biology.

[16]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[17]  Jean-Louis Marchand Conditionnement de processus markoviens , 2012 .

[18]  Harry van Zanten,et al.  Guided proposals for simulating multi-dimensional diffusion bridges , 2013, 1311.3606.

[19]  T. Jeulin Semi-Martingales et Grossissement d’une Filtration , 1980 .

[20]  F. Meulen,et al.  Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals , 2014, Electronic Journal of Statistics.

[21]  Mogens Bladt,et al.  Corrigendum to “Simple simulation of diffusion bridges with application to likelihood inference for diffusions” , 2010, Bernoulli.

[22]  J. Jacod,et al.  Grossissement initial, hypothese (H′) et theoreme de Girsanov , 1985 .

[23]  Fabrice Baudoin,et al.  Conditioned stochastic differential equations: theory, examples and application to finance , 2002 .

[24]  Gareth O. Roberts,et al.  Importance sampling techniques for estimation of diffusion models , 2009 .

[25]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[26]  B. Delyon,et al.  Simulation of conditioned diffusion and application to parameter estimation , 2006 .

[27]  M. Pitt,et al.  Likelihood based inference for diffusion driven models , 2004 .

[28]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.