Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions

Two models based on the Penman–Monteith equation have been used to calculate the evapotranspiration, on hourly and daily scales, for six crops (grass, tomato, soybean, sunflower, grain sorghum, sweet sorghum), grown in a Mediterranean region, in well watered conditions. These crops presented different sensitivity to the air vapour pressure deficit, due to their height ranging between 0.1 and 2.8 m. In the first model (model 1), the canopy resistance was considered variable and modelled as function of climatic variables. The experimental tests showed that this model simulated well the evapotranspiration for the six crops, both at hourly and daily scales. On the other hand, the simulations obtained by this model 1 at daily scale are clearly more accurate than those obtained by using the standard FAO 56 method. In the second model (model 2), the canopy resistance, locally determined, is considered constant. The experiments showed that the model 2 simulated acceptably the evapotranspiration only for the short crops: the grass (at hourly and daily scales) and the tomato (only at daily scale), but with lower performances than the model 1. For the other four crops (soybean, sunflower, grain sorghum and sweet sorghum) the model 2 seems to be not adapted to calculate correctly the evapotranspiration. In the conclusions we discuss the advantages linked to the use of the model 1 for the direct calculation of the evapotranspiration.

[1]  Marisa Gallardo,et al.  Evapotranspiration of horticultural crops in an unheated plastic greenhouse , 2005 .

[2]  Nader Katerji,et al.  Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions , 2005 .

[3]  Alain Perrier,et al.  Etude “In Situ” de l'evapotranspiration reelle d'une culture de ble , 1980 .

[4]  Jumah Amayreh,et al.  Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch , 2005 .

[5]  Nader Katerji,et al.  Some plant factors controlling evapotranspiration , 1991 .

[6]  N. Katerji,et al.  Conséquence d'une contrainte hydrique appliquée à différents stades phénologiques sur le rendement des plantes de poivron , 1991 .

[7]  J. Grace,et al.  The Effect of Wind and Humidity on Leaf Diffusive Resistance in Sitka Spruce Seedlings , 1975 .

[8]  Antonio Roberto Pereira,et al.  The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration , 2004 .

[9]  R. L. Snyder,et al.  An evaluation of common evapotranspiration equations , 1999, Irrigation Science.

[10]  S. Lovelli,et al.  Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches , 2005 .

[11]  H. Jones,et al.  Plants and Microclimate. , 1985 .

[12]  G. Rana Validation of a model of actual evapotranspiration for water stressed soybeans , 1997 .

[13]  Terry A. Howell,et al.  Conversion between evapotranspiration references and methods. , 2000 .

[14]  F. Villalobos,et al.  Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman–Monteith equation under semiarid conditions , 2003 .

[15]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[16]  J. Wallace,et al.  Evaporation from sparse crops‐an energy combination theory , 2007 .

[17]  K. G. McNaughton,et al.  Stomatal Control of Transpiration: Scaling Up from Leaf to Region , 1986 .

[18]  Hirozumi Watanabe,et al.  Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan , 2005 .

[19]  J. Doorenbos,et al.  Guidelines for predicting crop water requirements , 1977 .

[20]  A. Perrier,et al.  Evapotranspiration and canopy temperature of rice and groundnut in southeast coastal India. Crop coefficient approach and relationship between evapotranspiration and canopy temperature , 1991 .

[21]  Nader Katerji,et al.  Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review , 2000 .

[22]  Luca Testi,et al.  Evapotranspiration of a young irrigated olive orchard in southern Spain , 2003 .

[23]  Valentijn R. N. Pauwels,et al.  Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland , 2006 .

[24]  J. Stewart Modelling surface conductance of pine forest , 1988 .

[25]  Luis S. Pereira,et al.  Modelling surface resistance from climatic variables , 2000 .

[26]  Mladen Todorovic,et al.  Single-Layer Evapotranspiration Model with Variable Canopy Resistance , 1999 .

[27]  T. Hsiao,et al.  Maize canopies under two soil water regimes: II. Seasonal trends of evapotranspiration, carbon dioxide assimilation and canopy conductance, and as related to leaf area index , 1998 .

[28]  Jean Dauzat,et al.  `More crop per drop': how to make it acceptable for farmers? , 2005 .

[29]  H. N. Verma,et al.  Phenology based irrigation scheduling and determination of crop coefficient of winter maize in rice fallow of eastern India , 2005 .

[30]  Richard G. Allen,et al.  Report on the Expert Consultation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Requirements. Rome, Italy, 28-31 May 1990 , 1991 .

[31]  Marcello Mastrorilli,et al.  A model for predicting actual evapotranspiration under soil water stress in a Mediterranean region , 1997 .

[32]  Keith Beven,et al.  A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates , 1979 .

[33]  Alain Perrier,et al.  Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne : rôle d'un coefficient cultural , 1983 .

[34]  G. A. D. Medeiros,et al.  Crop coefficient for irrigated beans derived using three reference evaporation methods , 2005 .

[35]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[36]  N. Katerji,et al.  Determination de la resistance globale d'un couvert vegetal a la diffusion de vapeur d'eau et de ses differentes composantes. Approche théorique et vérification expérimentale sur une culture de luzerne , 1985 .

[37]  Donn G. DeCoursey,et al.  Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models , 1976 .

[38]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[39]  Nader Katerji,et al.  A Measurement Based Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Model for Crops of Different Height and in Contrasting Water Status , 1998 .

[40]  Nader Katerji,et al.  Evapotranspiration of sweet sorghum: A general model and multilocal validity in semiarid environmental conditions , 2001 .

[41]  N. Katerji,et al.  Is stomatal conductance in a tomato crop controlled by soil or atmosphere? , 1992, Oecologia.

[42]  M. Mastrorilli,et al.  Evapotranspiration and canopy resistance of grass in a Mediterranean region , 1994 .

[43]  T. Hsiao,et al.  Maize canopies under two soil water regimes. I. Diurnal patterns of energy balance, carbon dioxide flux, and canopy conductance , 1998 .

[44]  W. Jian,et al.  Peak crop coefficient values for Shaanxi, North-west China , 2005 .

[45]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.