Fuel cell materials and components

[1]  H. L. Hartley,et al.  Manuscript Preparation , 2022 .

[2]  J. Bockris,et al.  Fuel cells : their electrochemistry , 1969 .

[3]  R. Huggins Solid State Ionics , 1989 .

[4]  B. Steele Oxygen ion conductors and their technological applications , 1992 .

[5]  Takanori Inoue,et al.  Electrical properties of ceria-based oxides and their application to solid oxide fuel cells , 1992 .

[6]  R. Slade,et al.  Protonic conductivity of 12-tungstophosphoric acid (TPA, H3PW12O40) at elevated temperatures , 1992 .

[7]  Shimshon Gottesfeld,et al.  Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells , 1993 .

[8]  Takashi Hibino,et al.  Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe[sub 1 [minus] x]Sm[sub x]O[sub 3 [minus] [alpha]] , 1993 .

[9]  N. Minh Ceramic Fuel Cells , 1993 .

[10]  Hubert A. Gasteiger,et al.  Methanol electrooxidation on well-characterized Pt-Ru alloys , 1993 .

[11]  A. Luciano,et al.  Power sources. , 1995, Obstetrics and gynecology clinics of North America.

[12]  J. Maier,et al.  A molecular dynamics study of the high proton conducting phase of CsHSO4 , 1995 .

[13]  W. Göpel,et al.  Oxide ion conducting solid electrolytes based on Bi2O3 , 1996 .

[14]  N. Taniguchi,et al.  Operating Properties of Solid Oxide Fuel Cells Using BaCe0.8Gd0.2 O 3 − α Electrolyte , 1996 .

[15]  Ludwig J. Gauckler,et al.  Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors , 1996 .

[16]  A. Aricò,et al.  High performance fuel cell based on phosphotungstic acid as proton conducting electrolyte , 1996 .

[17]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[18]  Supramaniam Srinivasan,et al.  High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes , 1997 .

[19]  L. D. Jonghe,et al.  Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte , 1997 .

[20]  J. Maier,et al.  Imidazole and pyrazole-based proton conducting polymers and liquids , 1998 .

[21]  K. Kreuer Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides , 1999 .

[22]  Andrew Murray,et al.  Cell cycle: A snip separates sisters , 1999, Nature.

[23]  Fritz Aldinger,et al.  Bismuth based oxide electrolytes— structure and ionic conductivity , 1999 .

[24]  Brian C. H. Steele,et al.  Operation of solid oxide fuel cells at reduced temperatures , 1999 .

[25]  Brian C. H. Steele,et al.  Fuel-cell technology: Running on natural gas , 1999, Nature.

[26]  Jun Akikusa,et al.  Characterization of solid oxide fuel cell using doped lanthanum gallate , 2000 .

[27]  L. Carrette,et al.  Fuel cells: principles, types, fuels, and applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Anil V. Virkar,et al.  The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells , 2000 .

[29]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[30]  K. Swider-Lyons,et al.  How To Make Electrocatalysts More Active for Direct Methanol OxidationAvoid PtRu Bimetallic Alloys , 2000 .

[31]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[32]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[33]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[34]  Alan Atkinson,et al.  Chemically-induced stresses in ceramic oxygen ion-conducting membranes , 2000 .

[35]  John B. Goodenough,et al.  Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials , 2001 .

[36]  S. Haile,et al.  Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites , 2001 .

[37]  V. Antonucci,et al.  Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells , 2001 .

[38]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[39]  H. Nishiguchi,et al.  Oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2−XNiXO3 perovskite oxide and application for the electrolyte of solid oxide fuel cells , 2001 .

[40]  P. Moseley Fuel Cell Systems Explained , 2001 .

[41]  Sossina M. Haile,et al.  Solid acids as fuel cell electrolytes , 2001, Nature.

[42]  Paola Costamagna,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 ☆: Part II. Engineering, technology development and application aspects , 2001 .

[43]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[44]  G. Alberti,et al.  Solid state protonic conductors, present main applications and future prospects , 2001 .

[45]  M. Sano,et al.  High Performance Anodes for SOFCs Operating in Methane-Air Mixture at Reduced Temperatures , 2002 .

[46]  Adam Heller,et al.  A miniature biofuel cell operating in a physiological buffer. , 2002, Journal of the American Chemical Society.

[47]  Jonghee Han,et al.  Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique , 2002 .

[48]  Takashi Hibino,et al.  An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance with Hydrocarbons than with Hydrogen , 2002 .

[49]  Kerry D. Meinhardt,et al.  Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs , 2002 .

[50]  Eric D. Wachsman,et al.  Functionally gradient bilayer oxide membranes and electrolytes , 2002 .

[51]  S. Guruswamy,et al.  Properties and Performance of Cation‐Doped Ceria Electrolyte Materials in Solid Oxide Fuel Cell Applications , 2002 .

[52]  K. Kreuer On solids with liquidlike properties and the challenge to develop new proton-conducting separator materials for intermediate-temperature fuel cells. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  R. Mark Ormerod Solid oxide fuel cells , 2003 .

[54]  S. Singhal Solid Oxide Fuel Cells , 2003 .

[55]  S. Haile Materials for Fuel Cells , 2003 .

[56]  S. Nakao,et al.  Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell , 2003 .

[57]  W.Grover Coors,et al.  Protonic ceramic fuel cells for high-efficiency operation with methane , 2003 .

[58]  H. Bohn,et al.  Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95 , 2004 .