Experimental Evidence of Negative Linear Compressibility in the MIL-53 Metal-Organic Framework Family.

We report a series of powder X-ray diffraction experiments performed on the soft porous crystals MIL-53(Al) and NH2-MIL-53(Al) in a diamond anvil cell under different pressurization media. Systematic refinements of the obtained powder patterns demonstrate that these materials expand along a specific direction while undergoing total volume reduction under an increase in hydrostatic pressure. The results confirm for the first time the Negative Linear Compressibility behaviour of this family of materials recently predicted from quantum chemical calculations.

[1]  F. Kapteijn,et al.  Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance , 2014 .

[2]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[3]  François-Xavier Coudert,et al.  Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening. , 2013, The journal of physical chemistry letters.

[4]  François-Xavier Coudert,et al.  Metal-organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? , 2013, The Journal of chemical physics.

[5]  Lars Peters,et al.  Giant negative linear compressibility in zinc dicyanoaurate. , 2013, Nature materials.

[6]  Kevin J. Gagnon,et al.  MOFs under pressure: the reversible compression of a single crystal. , 2013, Journal of the American Chemical Society.

[7]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[8]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[9]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  Wei Li,et al.  Negative linear compressibility of a metal-organic framework. , 2012, Journal of the American Chemical Society.

[11]  F. Kapteijn,et al.  High compressibility of a flexible metal–organic framework , 2012 .

[12]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[13]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[14]  Matthew G. Tucker,et al.  Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. , 2012, Journal of the American Chemical Society.

[15]  A. Ghoufi,et al.  Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration , 2012 .

[16]  W. Marsden I and J , 2012 .

[17]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[18]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[19]  Anthony K. Cheetham,et al.  Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. , 2011, Chemical Society reviews.

[20]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[21]  Lei Zhang,et al.  Amorphization of metal-organic framework MOF-5 at unusually low applied pressure , 2010 .

[22]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[23]  K. Chapman,et al.  Pressure-induced amorphization and porosity modification in a metal-organic framework. , 2009, Journal of the American Chemical Society.

[24]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[25]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[26]  R. Angel,et al.  Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: a high-pressure single-crystal X-ray diffraction study. , 2009, Journal of the American Chemical Society.

[27]  Matthew G. Tucker,et al.  Large negative linear compressibility of Ag3[Co(CN)6] , 2008, Proceedings of the National Academy of Sciences.

[28]  K. Chapman,et al.  Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material. , 2008, Journal of the American Chemical Society.

[29]  Andrzej Katrusiak,et al.  High-pressure crystallography. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[30]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[31]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[32]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[33]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.

[34]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[35]  Baughman,et al.  Materials with negative compressibilities in one or more dimensions , 1998, Science.

[36]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[37]  S. Block,et al.  Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence , 1972, Science.