Incremental Bisimulation Abstraction Refinement

Abstraction refinement techniques in probabilistic model checking are prominent approaches to the verification of very large or infinite-state probabilistic concurrent systems. At the core of the refinement step lies the implicit or explicit analysis of a counterexample. This paper proposes an abstraction refinement approach for the probabilistic computation tree logic (PCTL), which is based on incrementally computing a sequence of may- and must-quotient automata. These are induced by depth-bounded bisimulation equivalences of increasing depth. The approach is both sound and complete, since the equivalences converge to the genuine PCTL equivalence. Experimental results with a prototype implementation show the effectiveness of the approach.

[1]  Alon Itai,et al.  Symmetry breaking in distributed networks , 1990, Inf. Comput..

[2]  Lijun Zhang,et al.  PASS: Abstraction Refinement for Infinite Probabilistic Models , 2010, TACAS.

[3]  Bernd Becker,et al.  Sigref- A Symbolic Bisimulation Tool Box , 2006, ATVA.

[4]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[5]  Joseph Sifakis,et al.  Automatic Verification Methods for Finite State Systems , 1989, Lecture Notes in Computer Science.

[6]  Rajeev Alur,et al.  Minimization of Timed Transition Systems , 1992, CONCUR.

[7]  Luca de Alfaro,et al.  Symbolic Magnifying Lens Abstraction in Markov Decision Processes , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[8]  Kim G. Larsen,et al.  Reduction and Refinement Strategies for Probabilistic Analysis , 2002, PAPM-PROBMIV.

[9]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[10]  Lijun Zhang,et al.  Deciding Simulations on Probabilistic Automata , 2007, ATVA.

[11]  Javier Esparza,et al.  Probabilistic Abstractions with Arbitrary Domains , 2011, SAS.

[12]  Marta Z. Kwiatkowska,et al.  Abstraction Refinement for Probabilistic Software , 2008, VMCAI.

[13]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[14]  Mahesh Viswanathan,et al.  A counterexample-guided abstraction-refinement framework for markov decision processes , 2008, TOCL.

[15]  Lijun Zhang,et al.  Incremental Bisimulation Abstraction Refinement , 2013, ACSD.

[16]  Lijun Zhang,et al.  Bisimulations Meet PCTL Equivalences for Probabilistic Automata , 2011, CONCUR.

[17]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[18]  Marta Z. Kwiatkowska,et al.  A game-based abstraction-refinement framework for Markov decision processes , 2010, Formal Methods Syst. Des..

[19]  Lijun Zhang,et al.  Probabilistic CEGAR , 2008, CAV.

[20]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[21]  W. Rudin Real and complex analysis , 1968 .

[22]  Amos Israeli,et al.  Token management schemes and random walks yield self-stabilizing mutual exclusion , 1990, PODC '90.

[23]  Christel Baier,et al.  Principles of model checking , 2008 .

[24]  Hans Toetenel,et al.  Partition Refinement in Real-Time Model Checking , 1998, FTRTFT.

[25]  Luca de Alfaro,et al.  Magnifying-Lens Abstraction for Markov Decision Processes , 2007, CAV.

[26]  Lijun Zhang,et al.  Best Probabilistic Transformers , 2010, VMCAI.

[27]  Rupak Majumdar,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2010, Lecture Notes in Computer Science.

[28]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[29]  Helmut Veith,et al.  Counterexample-guided abstraction refinement for symbolic model checking , 2003, JACM.

[30]  Lijun Zhang,et al.  Probabilistic Logical Characterization , 2011, Inf. Comput..

[31]  Christel Baier,et al.  Comparative branching-time semantics for Markov chains , 2005, Inf. Comput..

[32]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[33]  Henrik Ejersbo Jensen,et al.  Reachability Analysis of Probabilistic Systems by Successive Refinements , 2001, PAPM-PROBMIV.

[34]  Giuliana Franceschinis,et al.  Simple O(m logn) Time Markov Chain Lumping , 2010, TACAS.

[35]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[36]  Joost-Pieter Katoen,et al.  SMT-Based Bisimulation Minimisation of Markov Models , 2013, VMCAI.

[37]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[38]  Maurice Herlihy,et al.  Fast Randomized Consensus Using Shared Memory , 1990, J. Algorithms.

[39]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[40]  J. K. Hunter,et al.  Measure Theory , 2007 .

[41]  Gerhard Goos,et al.  Automated Technology for Verification and Analysis , 2004, Lecture Notes in Computer Science.

[42]  Maria Gradinariu Potop-Butucaru,et al.  Memory space requirements for self-stabilizing leader election protocols , 1999, PODC '99.

[43]  Nicolas Halbwachs,et al.  Minimal State Graph Generation , 1992, Sci. Comput. Program..

[44]  Mathieu Tracol,et al.  Computing Distances between Probabilistic Automata , 2011, QAPL.