Variability of the engineering properties of rock masses quantified by the geological strength index: the case of ophiolites with special emphasis on tunnelling

The paper presents a quantitative description, using the Geological Strength Index (GSI), of the rock masses within an ophiolitic complex including types with large variability due to their range of petrography, tectonic deformation and alteration. This description allows the estimation of the range of rock mass properties and the understanding of the dramatic changes in behaviour which can occur during tunnelling, from stable conditions to severe squeezing within the same formation at the same depth. The paper presents the geological model in which the ophiolitic complexes develop, their various petrographic types and their tectonic deformation, mainly due to overthrusts. The structure of the various rock masses includes all types from massive strong to sheared weak, while the conditions of discontinuities are in most cases fair to poor or very poor due to the fact that they are affected by serpentinisation and shearing. Serpentinisation also affects the initial intact rock itself, reducing its strength. Associated pillow lavas and tectonic mélanges are also characterised. Based on the GSI, a classification of the behaviour in terms of tunnelling is presented, including stable conditions, structural instability, mild overstressing, stress dependant instability, squeezing and ravelling.RésuméUne description quantitative des massifs rocheux des complexes ophiolitiques est présentée par le moyen de l’index GSI. Les ophiolites forment un cas particulier à cause de leur variété pétrographique, leur déformation tectonique et leur altération. Cette description permet l’estimation des propriétés géotechniques et la compréhension des différents types de comportements souvent très variables rencontrés lors du creusement de tunnels. L’article discute brièvement le modèle géologique de ces formations, leurs variétés pétrographiques et leur déformation à cause surtout des charriages. La structure des massifs rocheux ophiolitiques inclut tous les types, (du milieu continu au cisaillé), tandis que l’état des joints est toujours faible à cause de la serpentinisation de leurs épontes. La serpentinisation peut aussi affecter la masse entière de la roche saine. Une classification du comportement en tunnel est présentée basée sur l’index GSI: conditions stables, instabilité structurale, instabilité due à des convergences.

[1]  A. McCaig,et al.  Origins and significance of rocks in an imbricate thrust zone beneath the Pindos ophiolite, northwestern Greece , 1984, Geological Society, London, Special Publications.

[2]  D. Lentz The igneous rocks of Greece: The anatomy of an orogen. Georgia Pe-Piper and David J.W. Piper. , 2004 .

[3]  J. Coumantakis Comportement des peridotites et des serpentinites de la grece en travaux publics et leur proprietes physiques et mecaniques , 1982 .

[4]  E. Hoek,et al.  The geological strength index: applications and limitations , 2005 .

[5]  E. Hoek,et al.  Gsi: A Geologically Friendly Tool For Rock Mass Strength Estimation , 2000 .

[6]  Diederichs,et al.  Underground Works In Hard Rock Tunnelling And Mining , 2000 .

[7]  Jean Aubouin Les grandes structures geologiques: Jacques Debelmas and Georges Mascle, 1993. Masson, Paris. Paperback, VIII + 299 pp. ISBN 2-225-84169-1 , 1994 .

[8]  U. Glawe,et al.  Better Understanding the Strengths of Serpentinite Bimrock and Homogeneous Serpentinite , 2004 .

[9]  E. Hoek,et al.  Estimating the geotechnical properties of heterogeneous rock masses such as flysch , 2001 .

[10]  E. Hoek,et al.  Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses , 2005 .

[11]  Nick Barton,et al.  Engineering classification of rock masses for the design of tunnel support , 1974 .

[12]  E. Hoek,et al.  Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation , 1998 .

[13]  G. Pe‐Piper,et al.  The igneous rocks of Greece , 2002 .

[14]  A. Foucault,et al.  Dictionnaire de géologie , 1980 .

[15]  E. Hoek,et al.  Predicting tunnel squeezing problems in weak heterogeneous rock masses , 2000 .

[16]  Z. T. Bieniawski,et al.  Engineering classification of jointed rock masses , 1973 .

[17]  P. K. Kaiser,et al.  Progressive spalling in massive brittle rock , 2000 .