Molecular dynamics simulations of liquid methanol and methanol–water mixtures with polarizable models

A polarizable model for simulation of liquid methanol, compatible with the COS/G2 water model, has been developed using the Charge‐on‐Spring (COS) technique. The model consists of three point charges, with one polarizable center on the oxygen atom. The Lennard–Jones parameters on the oxygen atom together with the molecular polarizability were varied to reproduce the experimental heat of vaporization and density of liquid methanol at ambient conditions. We examined the energies of various methanol dimers in the gas phase and compared them with values obtained from ab initio calculations. The model was then used to study the thermodynamic, dynamic, structural, and dielectric properties of liquid methanol as well as of a methanol–water mixture. A microscopic picture of the structure of pure liquid methanol and of the methanol–water mixture is provided. Good agreement was found between the results from our model simulations and available experimental and ab initio calculation data. In particular, the experimental dielectric permittivity of 32 could be reproduced, which had been shown to be difficult when using nonpolarizable models. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1494–1504, 2006

[1]  E. Meijer,et al.  Density-functional theory-based molecular simulation study of liquid methanol. , 2004, The Journal of chemical physics.

[2]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[3]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[4]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[5]  A. Soper,et al.  The structure of liquid methanol revisited: a neutron diffraction experiment at −80 °C and +25 °C , 1999 .

[6]  Arieh Ben-Naim,et al.  Solvation thermodynamics of nonionic solutes , 1984 .

[7]  W. V. van Gunsteren,et al.  Estimating entropies from molecular dynamics simulations. , 2004, The Journal of chemical physics.

[8]  Wilfred F. van Gunsteren,et al.  Development of a simple, self-consistent polarizable model for liquid water , 2003 .

[9]  A. Narten,et al.  Hydrogen bonding in liquid methanol and ethanol determined by x‐ray diffraction , 1984 .

[10]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[11]  Bouke P. van Eijck,et al.  Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations , 1999 .

[12]  Jan Kroon,et al.  TRANSFERABLE AB INITIO INTERMOLECULAR POTENTIALS. 2. VALIDATION AND APPLICATION TO CRYSTAL STRUCTURE PREDICTION , 1999 .

[13]  Steven J. Stuart,et al.  Potentials and Algorithms for Incorporating Polarizability in Computer Simulations , 2003 .

[14]  P. Jedlovszky,et al.  Comparison of different water models from ambient to supercritical conditions: A Monte Carlo simulation and molecular Ornstein-Zernike study , 1999 .

[15]  Michael L. Klein,et al.  Molecular-dynamics simulation of aqueous mixtures : methanol, acetone, and ammonia , 1990 .

[16]  Alexander D. MacKerell,et al.  CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model , 2004, J. Comput. Chem..

[17]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[18]  Yoshio Nakamura,et al.  Nuclear magnetic resonance and molecular dynamics study of methanol up to the supercritical region , 1998 .

[19]  D. Ives,et al.  The structural properties of alcohol–water mixtures , 1966 .

[20]  S. Z. Mikhail,et al.  Densities and Viscosities of Methanol-Water Mixtures. , 1961 .

[21]  A. D. Buckingham,et al.  A theory of the dielectric polarization of polar substances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  C. Brooks Computer simulation of liquids , 1989 .

[23]  B. Smit,et al.  Molecular simulations of the vapour-liquid coexistence curve of methanol , 1995 .

[24]  Robert L. Hurle,et al.  The effect of isotopic substitution on self-diffusion in methanol under pressure , 1980 .

[25]  W. V. van Gunsteren,et al.  Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. , 2004, The Journal of chemical physics.

[26]  Munir S. Skaf,et al.  Computer Simulation of Hydrogen-Bonding Liquids , 1993 .

[27]  A. Hüttermann,et al.  The Hydrogen Bond , 1940, Nature.

[28]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[29]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[30]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[31]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[32]  Dean R. Haeffner,et al.  Electron distribution in water , 2000 .

[33]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mauro Ferrario,et al.  Molecular-dynamics simulation of liquid methanol , 1987 .

[35]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[36]  James Andrew McCammon,et al.  Molecular Dynamics Simulations with Interaction Potentials Including Polarization Development of a Noniterative Method and Application to Water , 1990 .

[37]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[38]  U. Kaatze Complex Permittivity of Water as a Function of Frequency and Temperature , 1989 .

[39]  Wilfred F. van Gunsteren,et al.  Parametrization of aliphatic CHn united atoms of GROMOS96 force field , 1998, J. Comput. Chem..

[40]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[41]  Vincenzo Mollica,et al.  Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution , 1981 .

[42]  Wilfred F van Gunsteren,et al.  Molecular dynamics simulations of peptides containing an unnatural amino acid: Dimerization, folding, and protein binding , 2003, Proteins.

[43]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[44]  Gianni Cardini,et al.  Hydrogen bond dynamics in liquid methanol , 2003 .

[45]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[46]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[47]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[48]  S. Weerasinghe,et al.  A Kirkwood-Buff derived force field for methanol and aqueous methanol solutions. , 2005, The journal of physical chemistry. B.

[49]  Haibo Yu,et al.  Accounting for polarization in molecular simulation , 2005, Comput. Phys. Commun..

[50]  Wilfred F. van Gunsteren,et al.  The effect of force-field parameters on properties of liquids: Parametrization of a simple three-site model for methanol , 2000 .

[51]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[52]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .

[53]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[54]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[55]  S. Dixit,et al.  Molecular segregation observed in a concentrated alcohol–water solution , 2002, Nature.

[56]  Teresa Fonseca,et al.  Wave vector dependent dielectric relaxation in hydrogen‐bonding liquids: A molecular dynamics study of methanol , 1993 .

[57]  R. Lees,et al.  Torsion–Vibration–Rotation Interactions in Methanol. I. Millimeter Wave Spectrum , 1968 .

[58]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.

[59]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[60]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[61]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[62]  K. Kleinhenz Landolt-Börnstein: Neue Serie Gr. IV, Bd. 3, J. Weishaupt, Pullach: Thermodynamisches Gleichgewicht siedender Gemische, Springer-Verlag, Berlin-Heidelberg-New York 1975, 376 Seiten, Preis: DM 320,–. , 1976 .

[63]  L. Dang,et al.  Many-body interactions in liquid methanol and its liquid/vapor interface: A molecular dynamics study , 2003 .

[64]  Sandeep Patel,et al.  A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model. , 2005, The Journal of chemical physics.

[65]  Jiali Gao,et al.  A Polarizable Intermolecular Potential Function for Simulation of Liquid Alcohols , 1995 .

[66]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[67]  Joseph A Morrone,et al.  Ab initio molecular dynamics study of proton mobility in liquid methanol , 2002 .

[68]  A. L. McClellan,et al.  Tables of experimental dipole moments , 1963 .

[69]  D. M. Dennison,et al.  The Methyl Alcohol Molecule and Its Microwave Spectrum , 1953 .

[70]  John A. Monick,et al.  Alcohols: Their Chemistry, Properties and Manufacture , 1968 .

[71]  George A. Kaminski,et al.  Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry , 2004 .

[72]  Ab initio molecular dynamics study of liquid methanol , 2002, physics/0210123.

[73]  A. Morita,et al.  An ab initio analysis of medium perturbation on molecular polarizabilities , 1999 .

[74]  Giocondo Horacio Barbenza N° 79. — « Dielectric dispersion in pure methyl alcohol as a function of temperature » , 1968 .

[75]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[76]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[77]  D. Frenkel,et al.  Molecular dynamics simulations. , 2002, Current opinion in structural biology.

[78]  J. Hermans,et al.  Excess free energy of liquids from molecular dynamics simulations. Application to water models. , 1988, Journal of the American Chemical Society.

[79]  Akihiro Morita Water polarizability in condensed phase: Ab initio evaluation by cluster approach , 2002, J. Comput. Chem..