Exploiting Sparsity in Tight-Dimensional Spaces for Piecewise Continuous Signal Recovery

Recovery of certain piecewise continuous signals from noisy observations has been a major challenge in sciences and engineering. In this paper, in a tight-dimensional representation space, we exploit sparsity hidden in a class of possibly discontinuous signals named finite-dimensional piecewise continuous (FPC) signals. More precisely, we propose a tight-dimensional linear transformation which reveals a certain sparsity in discrete samples of the FPC signals. This transformation is designed by exploiting the fact that most of the consecutive samples are contained in special subspaces. Numerical experiments on recovery of piecewise polynomial signals and piecewise sinusoidal signals show the effectiveness of the revealed sparsity.

[1]  Dimitri Van De Ville,et al.  A Signal Processing Approach to Generalized 1-D Total Variation , 2011, IEEE Transactions on Signal Processing.

[2]  Ivan W. Selesnick,et al.  Generalized Total Variation: Tying the Knots , 2015, IEEE Signal Processing Letters.

[3]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[4]  Guoan Bi,et al.  The Group Lasso for Stable Recovery of Block-Sparse Signal Representations , 2011, IEEE Transactions on Signal Processing.

[5]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[6]  Ram Rajagopal,et al.  Detection and Statistics of Wind Power Ramps , 2013, IEEE Transactions on Power Systems.

[7]  Károly Jordán Calculus of finite differences , 1951 .

[8]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[9]  Stephan Didas,et al.  Splines in Higher Order TV Regularization , 2006, International Journal of Computer Vision.

[10]  Stephen P. Boyd,et al.  1 Trend Filtering , 2009, SIAM Rev..

[11]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[12]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[13]  Mathews Jacob,et al.  Recovery of Discontinuous Signals Using Group Sparse Higher Degree Total Variation , 2015, IEEE Signal Processing Letters.

[14]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[15]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[16]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[17]  René Vidal,et al.  Block-Sparse Recovery via Convex Optimization , 2011, IEEE Transactions on Signal Processing.

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[20]  A. Swami,et al.  Blind high resolution localization and tracking of multiple frequency hopped signals , 2001 .

[21]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[22]  Gustavo C. Amaral,et al.  Automatic Fault Detection in WDM-PON With Tunable Photon Counting OTDR , 2015, Journal of Lightwave Technology.

[23]  Shunsuke Ono,et al.  Exploiting Group Sparsity in Nonlinear Acoustic Echo Cancellation by Adaptive Proximal Forward-Backward Splitting , 2013, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[24]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[25]  A. Bruckstein,et al.  On Over-Parameterized Model Based TV-Denoising , 2007, 2007 International Symposium on Signals, Circuits and Systems.

[26]  Isao Yamada,et al.  Recovery of piecewise finite-dimensional continuous signals by exploiting sparsity , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[27]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[28]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[29]  Don J. Torrieri,et al.  Mobile frequency-hopping CDMA systems , 2000, IEEE Trans. Commun..

[30]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[31]  Nikos D. Sidiropoulos,et al.  Stochastic Modeling and Particle Filtering Algorithms for Tracking a Frequency-Hopped Signal , 2009, IEEE Transactions on Signal Processing.

[32]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[33]  B. R. Hunt,et al.  Biased estimation for nonparametric identification of linear systems , 1971 .

[34]  Nikos D. Sidiropoulos,et al.  Estimating Multiple Frequency-Hopping Signal Parameters via Sparse Linear Regression , 2010, IEEE Transactions on Signal Processing.

[35]  Michael Elad,et al.  Sparsity Based Methods for Overparametrized Variational Problems , 2014, SIAM J. Imaging Sci..

[36]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[37]  R. Bellman,et al.  Curve Fitting by Segmented Straight Lines , 1969 .

[38]  Laurent Condat,et al.  Sampling Signals with Finite Rate of Innovation and Recovery by Maximum Likelihood Estimation , 2013, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[39]  Andreas Polydoros,et al.  Hop-timing estimation for FH signals using a coarsely channelized receiver , 1996, IEEE Trans. Commun..

[40]  S. Geer,et al.  Oracle Inequalities and Optimal Inference under Group Sparsity , 2010, 1007.1771.

[41]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[42]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[43]  Jean-Philippe Vert,et al.  Group lasso with overlap and graph lasso , 2009, ICML '09.

[44]  S. Twomey The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements , 1965 .

[45]  Pedro M. Crespo,et al.  Reconstruction of aperiodic FRI signals and estimation of the rate of innovation based on the state space method , 2011, Signal Process..

[46]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[47]  R. Tibshirani Adaptive piecewise polynomial estimation via trend filtering , 2013, 1304.2986.

[48]  Nikos D. Sidiropoulos,et al.  Sparse Parametric Models for Robust Nonstationary Signal Analysis: Leveraging the Power of Sparse Regression , 2013, IEEE Signal Processing Magazine.

[49]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[50]  Thierry Blu,et al.  Sampling Piecewise Sinusoidal Signals With Finite Rate of Innovation Methods , 2010, IEEE Transactions on Signal Processing.

[51]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.