A two-level queueing system for interactive browsing and searching of video content

This paper presents a two-level queueing system for dynamic summarization and interactive searching of video content. Video frames enter the queueing system; some insignificant and redundant frames are removed; the remaining frames are pulled out of the system as top-level key frames. Using an energy-minimization method, the first queue removes the video frames that constitute the gradual transitions of video shots. The second queue measures the content similarity of video frames and reduces redundant frames. In the queueing system, all key frames are linked in a directed-graph index structure, allowing video content to be accessed at any level-of-detail. Furthermore, this graph-based index structure enables interactive video content exploration, and the system is able to retrieve the video key frames that complement the video content already viewed by users. Experimental results on four full-length videos show that our queueing system performs much better than two existing methods on video key frame selection at different compression ratios. The evaluation on video content search shows that our interactive system is more effective than other systems on eight video searching tasks. Compared with the regular media player, our system reduces the average content searching time by half.

[1]  Sang Uk Lee,et al.  Efficient video indexing scheme for content-based retrieval , 1999, IEEE Trans. Circuits Syst. Video Technol..

[2]  John R. Kender,et al.  Video Summaries through Mosaic-Based Shot and Scene Clustering , 2002, ECCV.

[3]  John R. Kender,et al.  Time-constrained dynamic semantic compression for video indexing and interactive searching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[4]  Shih-Fu Chang,et al.  VideoQ: an automated content based video search system using visual cues , 1997, MULTIMEDIA '97.

[5]  Thierry Pun,et al.  Information-Theoretic Framework for The Joint Temporal Partionning and Representation of Video Data , 2003 .

[6]  Wolfgang Effelsberg,et al.  VisualGREP: a systematic method to compare and retrieve video sequences , 1997, Electronic Imaging.

[7]  Ioannis Pitas,et al.  Content-based video parsing and indexing based on audio-visual interaction , 2001, IEEE Trans. Circuits Syst. Video Technol..

[8]  Yueting Zhuang,et al.  Adaptive key frame extraction using unsupervised clustering , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[9]  Rainer Lienhart,et al.  Reliable Transition Detection in Videos: A Survey and Practitioner's Guide , 2001, Int. J. Image Graph..

[10]  Gary Marchionini,et al.  The Open Video Digital Library , 2002, D Lib Mag..

[11]  Yong Wang,et al.  VisGenie: a Generic Video Visualization System , 2001 .

[12]  Alexandra Psarrou,et al.  Key-frame extraction algorithm using entropy difference , 2004, MIR '04.

[13]  Boon-Lock Yeo,et al.  Segmentation of Video by Clustering and Graph Analysis , 1998, Comput. Vis. Image Underst..

[14]  John R. Smith,et al.  On the detection of semantic concepts at TRECVID , 2004, MULTIMEDIA '04.

[15]  Andreas Girgensohn,et al.  Time-Constrained Keyframe Selection Technique , 2004, Multimedia Tools and Applications.

[16]  Arbee L. P. Chen,et al.  Semantic video model for content-based retrieval , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[17]  Minerva M. Yeung,et al.  Efficient matching and clustering of video shots , 1995, Proceedings., International Conference on Image Processing.

[18]  Gary Marchionini,et al.  Open video: A framework for a test collection , 2000, J. Netw. Comput. Appl..

[19]  Jianping Fan,et al.  Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing , 2004, IEEE Transactions on Image Processing.

[20]  Michael A. Smith,et al.  Video skimming and characterization through the combination of image and language understanding techniques , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Edoardo Ardizzone,et al.  A semantic modeling approach for video retrieval by content , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[22]  Sethuraman Panchanathan,et al.  A critical evaluation of image and video indexing techniques in the compressed domain , 1999, Image Vis. Comput..

[23]  Alan Hanjalic,et al.  Automated high-level movie segmentation for advanced video-retrieval systems , 1999, IEEE Trans. Circuits Syst. Video Technol..

[24]  Wolfgang Effelsberg,et al.  VisualGREP: A Systematic Method to Compare and Retrieve Video Sequences , 2004, Multimedia Tools and Applications.

[25]  Elke A. Rundensteiner,et al.  MMVIS: design and implementation of a multimedia visual information seeking environment , 1997, MULTIMEDIA '96.

[26]  John R. Kender,et al.  Semantic mosaic for indexing and compressing instructional videos , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[27]  Paul Over,et al.  TRECVID: evaluating the effectiveness of information retrieval tasks on digital video , 2004, MULTIMEDIA '04.

[28]  Stephen W. Smoliar,et al.  Video parsing and browsing using compressed data , 1995, Multimedia Tools and Applications.

[29]  Thomas S. Huang,et al.  A novel relevance feedback technique in image retrieval , 1999, MULTIMEDIA '99.

[30]  Stephen W. Smoliar,et al.  Video parsing, retrieval and browsing: an integrated and content-based solution , 1997, MULTIMEDIA '95.

[31]  P. Anandan,et al.  Mosaic based representations of video sequences and their applications , 1995, Proceedings of IEEE International Conference on Computer Vision.

[32]  Shih-Fu Chang,et al.  Constrained utility maximization for generating visual skims , 2001, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL 2001).

[33]  Tanveer F. Syeda-Mahmood,et al.  Detecting topical events in digital video , 2000, ACM Multimedia.

[34]  Tat-Seng Chua,et al.  A video retrieval and sequencing system , 1995, TOIS.