Prompt Detection of Changepoint in the Operation of Networked Systems

Detection of network problems is an important step in automating network management. Early detection of performance degradation can alleviate the last moment hassel of network managers. This paper focuses on a statistical method aiming at detecting changepoint as quickly as possible using Bayes factor along with the binary segmentation procedure modified for fast detection. Computer simulation verifies the effectiveness and correctness of the proposed approach.

[1]  Moshe Pollak,et al.  Detecting a change in regression: first-order optimality , 1999 .

[2]  Yong Zhou,et al.  Nonparametric estimation of structural change points in volatility models for time series , 2005 .

[3]  Henri Caussinus,et al.  Choosing a Linear Model with a Random Number of Change-Points and Outliers , 1997 .

[4]  Kenji Yamanishi,et al.  A unifying framework for detecting outliers and change points from time series , 2006, IEEE Transactions on Knowledge and Data Engineering.

[5]  S. Julious Inference and estimation in a changepoint regression problem , 2001 .

[6]  Gordon F. Pitz,et al.  Detection of change in nonstationary, random sequences , 1979 .

[7]  H. Koul Asymptotics of some estimators and sequential residual empiricals in nonlinear time series , 1996 .

[8]  Lynn Kuo,et al.  Bayesian Binary Segmentation Procedure for a Poisson Process With Multiple Changepoints , 2001 .

[9]  Wolfgang Schmid,et al.  CUSUM control schemes for Gaussian processes , 1997 .

[10]  Mohamed Boutahar,et al.  Evidence on structural changes in U.S. time series , 2005 .

[11]  Stepana Lazarova,et al.  Testing for structural change in regression with long memory processes , 2004 .

[12]  A. Inoue TESTING FOR DISTRIBUTIONAL CHANGE IN TIME SERIES , 2001, Econometric Theory.

[13]  Song S. Qian,et al.  Soil total phosphorus threshold in the Everglades: a Bayesian changepoint analysis for multinomial response data , 2004 .

[14]  I. B. MacNeill,et al.  The Effect of Serial Correlation on Tests for Parameter Change at Unknown Time , 1993 .

[15]  Manfred Mudelsee,et al.  Ramp function regression: a tool for quantifying climate transitions , 2000 .

[16]  D. Burn,et al.  Detection of hydrologic trends and variability , 2002 .

[17]  Sangyeol Lee,et al.  A nonparametric test for the change of the density function in strong mixing processes , 2004 .

[18]  Paulin Coulibaly,et al.  Wavelet analysis of variability in annual Canadian streamflows , 2004 .

[19]  Paulin Coulibaly,et al.  Spatial and Temporal Variability of Canadian Seasonal Streamflows , 2005 .

[20]  J. Timmer,et al.  Detection of obstructive sleep apnea by analysis of phase angle using the forced oscillation signal. , 2000, Respiration physiology.

[21]  D. Siegmund,et al.  Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point , 1995 .

[22]  Gwo-Hshiung Tzeng,et al.  Using a Fuzzy Piecewise Regression Analysis to Predict the Nonlinear Time-Series of Turbulent Flows with Automatic Change-Point Detection , 2001 .

[23]  James A. Koziol,et al.  A Note on Signed Rank Tests for the Changepoint Problem , 1996 .

[24]  Marc Lavielle,et al.  An application of MCMC methods for the multiple change-points problem , 2001, Signal Process..

[25]  C. Xiong,et al.  On detecting change in likelihood ratio ordering , 2002 .

[26]  Kazuhiko Hiramatsu,et al.  Estimating mortality rates from tag recoveries: incorporating over-dispersion, correlation, and change points , 1994 .

[27]  Zachary G. Stoumbos,et al.  Economic statistical design of adaptive control schemes for monitoring the mean and variance: An application to analyzers , 2005 .

[28]  J Jiang,et al.  A SCANNING t TEST OF MULTISCALE ABRUPT CHANGES AND ITS COHERENCE ANALYSIS , 2001 .

[29]  P. Guttorp,et al.  Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River , 2002 .

[30]  Francesco Lisi,et al.  Statistical considerations on the randomness of annual maximum daily rainfall , 1997 .

[31]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[32]  A. Krieger,et al.  Surveillance of a Simple Linear Regression , 2003 .

[33]  Heping Zhang,et al.  Detecting change points and monitoring biomedical data , 1995 .

[34]  W. J. Fitzgerald,et al.  Analytical approach to changepoint detection in Laplacian noise , 1995 .

[35]  S. Yue,et al.  Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series , 2002 .

[36]  Wai Keung Li,et al.  F-tests for seasonal differencing with a break-point , 1997 .

[37]  Jaromír Antoch,et al.  Effect of dependence on statistics for determination of change , 1997 .

[38]  W. Li,et al.  The akaike information criterion in threshold modelling: Some empirical evidences , 1988 .

[39]  Robert Lund,et al.  Detection of Undocumented Changepoints: A Revision of the Two-Phase Regression Model , 2002 .

[40]  T. Lai SEQUENTIAL ANALYSIS: SOME CLASSICAL PROBLEMS AND NEW CHALLENGES , 2001 .

[41]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[42]  Jaromír Antoch,et al.  Permutation tests in change point analysis , 2001 .

[43]  Tze Leung Lai,et al.  Information Bounds and Quick Detection of Parameter Changes in Stochastic Systems , 1998, IEEE Trans. Inf. Theory.

[44]  C. Granger,et al.  Nonstationarities in Stock Returns , 2005, Review of Economics and Statistics.

[45]  Fabio Busetti,et al.  Tests of stationarity against a change in persistence , 2004 .

[46]  B. Western,et al.  A Bayesian Change Point Model for Historical Time Series Analysis , 2004, Political Analysis.

[47]  Sam Woolford,et al.  A multiple-threshold AR(1) model , 1985, Journal of Applied Probability.

[48]  Thomas I. Wahl,et al.  ACCOUNTING FOR AGGREGATION BIAS IN ALMOST IDEAL DEMAND SYSTEMS , 1996 .

[49]  P Bélisle,et al.  Change-point analysis of neuron spike train data. , 1998, Biometrics.

[50]  Pilar Loreto Iglesias,et al.  A Gibbs sampling scheme to the product partition model: an application to change-point problems , 2003, Comput. Oper. Res..

[51]  H. Storch,et al.  Changes in the winter precipitation in Romania and its relation to the large-scale circulation , 1996 .

[52]  M. Srivastava,et al.  Comparison of EWMA, CUSUM and Shiryayev-Roberts Procedures for Detecting a Shift in the Mean , 1993 .

[53]  L. Horváth,et al.  Invariance principles for changepoint problems , 1988 .

[54]  Franco Biondi,et al.  Stochastic modeling of regime shifts , 2002 .

[55]  R. Souidi A new sequential test for detection of a point of change in ARMA parameters , 1990 .

[56]  Nathan J. Mantua,et al.  Methods for detecting regime shifts in large marine ecosystems: a review with approaches applied to North Pacific data , 2004 .

[57]  Siem Jan Koopman,et al.  Detecting shocks: Outliers and breaks in time series , 1997 .

[58]  T. A. Buishand,et al.  Tests for detecting a shift in the mean of hydrological time series , 1984 .

[59]  Peter Avery The effect of dependence in a binary sequence on tests for a changepoint or a changed segment , 2001 .

[60]  R. Webster West,et al.  Changepoint alternatives to the NOAEL , 2005 .

[61]  Jeffrey Hales,et al.  Predicting the Next Step of a Random Walk: Experimental Evidence of Regime-Shifting Beliefs , 2001 .

[62]  Winfried Stute,et al.  Nonparametric estimation of a discontinuity in regression , 2002 .

[63]  Pentti Saikkonen,et al.  Threshold Autoregressions for Strongly Autocorrelated Time Series , 2000 .

[64]  Zbigniew W. Kundzewicz,et al.  Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques , 2004 .

[65]  Jean-Marie Dufour,et al.  Editors' introduction recent developments in the econometrics of structural change , 1996 .

[66]  Lajos Horváth,et al.  Testing for changes in the mean or variance of a stochastic process under weak invariance , 2000 .

[67]  P. Chu,et al.  Large-Scale Circulation Features Associated with Decadal Variations of Tropical Cyclone Activity over the Central North Pacific , 2002 .

[68]  Jan F. Kiviet,et al.  Exact Tests in Single Equation Autoregressive Distributed Lag Models. , 1997 .

[69]  Grégory Beaugrand,et al.  Monitoring marine plankton ecosystems. I: Description of an ecosystem approach based on plankton indicators , 2004 .

[70]  M. Frisén,et al.  Some statistical aspects of methods for detection of turning points in business cycles , 2006 .

[71]  Edna Schechtman A conservative nonparametric distribution-free confidence bound for the shift in the changepoint problem , 1983 .

[72]  Emmanuel Yashchin,et al.  Estimating the current mean of a process subject to abrupt changes , 1995 .

[73]  J. Stock,et al.  Testing for and Dating Common Breaks in Multivariate Time Series , 1998 .

[74]  Christopher J. Anderson,et al.  System Change, Learning and Public Opinion about the Economy , 2000, British Journal of Political Science.

[75]  D. Seidel,et al.  An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes , 2004 .

[76]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[77]  M. Resende,et al.  A Combinatorial Approach to Piecewise Linear Time Series Analysis , 2002 .

[78]  Quanxi Shao,et al.  Applications: Modelling trends in groundwater levels by segmented regression with constraints , 2002 .

[79]  Lajos Horváth,et al.  Change-Point Detection in Long-Memory Processes , 2001 .

[80]  Nobuhisa Kashiwagi,et al.  A state-space approach to polygonal line regression , 1996 .

[81]  Michel Wedel,et al.  Global and local covert visual attention: Evidence from a bayesian hidden markov model , 2003 .

[82]  Jinde Wang,et al.  Testing and estimating for change in long memory parameter , 2006 .

[83]  H. Tong,et al.  Threshold time series modelling of two Icelandic riverflow systems , 1985 .

[84]  Ruey S. Tsay,et al.  Testing and Modeling Threshold Autoregressive Processes , 1989 .

[85]  B. Ray,et al.  Bayesian methods for change‐point detection in long‐range dependent processes , 2002 .

[86]  Rainer von Sachs,et al.  A Wavelet‐Based Test for Stationarity , 2000 .

[87]  V. Moskvina,et al.  An Algorithm Based on Singular Spectrum Analysis for Change-Point Detection , 2003 .

[88]  John Norton,et al.  Detection and estimation of abrupt changes in input or state , 1997 .

[89]  Berlin Wu,et al.  Detection of change points in time series analysis with fuzzy statistics , 2001, Int. J. Syst. Sci..

[90]  R. Tsay Testing and modeling multivariate threshold models , 1998 .

[91]  Michael Sonis,et al.  TEMPORAL LEONTIEF INVERSE , 1998, Macroeconomic Dynamics.

[92]  Kurt Hornik,et al.  Testing and dating of structural changes in practice , 2003, Comput. Stat. Data Anal..

[93]  Pedro J. F de Lima,et al.  Nonlinearities and Nonstationarities in Stock Returns , 1998 .

[94]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[95]  Fabio H. Nieto Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data , 2005 .

[96]  Berlin Wu,et al.  Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models , 2002 .

[97]  Ming-ko Woo,et al.  Changes in rainfall characteristics in northern Nigeria , 1998 .

[98]  Emmanuel Yashchin,et al.  Change-point models in industrial applications , 1997 .

[99]  Stephen Labson Stochastic Trends and Structural Breaks in the Intensity of Metals Use , 1994 .

[100]  Thomas C. Peterson,et al.  A new method for detecting undocumented discontinuities in climatological time series , 1995 .

[101]  Kyong Joo Oh,et al.  Developing Time-Based Clustering Neural Networks to Use Change-Point Detection: Application to Financial Time Series , 2005, Asia Pac. J. Oper. Res..

[102]  Marc Lavielle,et al.  Optimal segmentation of random processes , 1998, IEEE Trans. Signal Process..

[103]  Peter Wessman,et al.  Some power aspects of methods for detecting different shifts in the mean , 2000 .

[104]  Chihiro Hirotsu,et al.  Changepoint Analysis as a Method for Isotonic Inference , 2002 .

[105]  J. Bai,et al.  Estimation of a Change Point in Multiple Regression Models , 1997, Review of Economics and Statistics.

[106]  Zacharias Psaradakis On the asymptotic behaviour of unit-root tests in the presence of a Markov trend , 2002 .

[107]  Bai Jushan Estimation of multiple-regime regressions with least absolutes deviation , 1995 .

[108]  G. S. Maddala,et al.  Structural change and unit roots , 1996 .

[109]  G. C. Tiao,et al.  Modeling Multiple Time Series with Applications , 1981 .

[110]  Tae Yoon Kim,et al.  Variance change point detection via artificial neural networks for data separation , 2005, Neurocomputing.

[111]  George Casella,et al.  An objective Bayesian analysis of the change point problem , 2005 .

[112]  V. Dose,et al.  Bayesian analysis of climate change impacts in phenology , 2004 .

[113]  Philip J. Smith Power and sample size considerations for detecting deviations from secular trends in surveillance surveys , 1997 .

[114]  T. Vogelsang Unit Roots, Cointegration, and Structural Change , 2001 .

[115]  Monika Ritsch-Marte,et al.  A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep , 2005 .

[116]  M. Pollak,et al.  Nonanticipating estimation applied to sequential analysis and changepoint detection , 2005, math/0507434.

[117]  Igor V. Nikiforov A suboptimal quadratic change detection scheme , 2000, IEEE Trans. Inf. Theory.

[118]  Claude N. Williams,et al.  Detection of Undocumented Changepoints Using Multiple Test Statistics and Composite Reference Series. , 2005 .

[119]  S. Carpenter,et al.  Rising variance: a leading indicator of ecological transition. , 2006, Ecology letters.

[120]  Peter McAdam,et al.  Unemployment, Hysteresis and Transition , 2003, SSRN Electronic Journal.

[121]  T. Teräsvirta,et al.  Evaluating GARCH models , 2002 .

[122]  Aiguo Li,et al.  Real-Time Segmenting Time Series Data , 2003, APWeb.

[123]  T. N. Sriram Fixed size confidence regions for parameters of threshold AR(1) models , 2001 .

[124]  S. Rodionov A sequential algorithm for testing climate regime shifts , 2004 .

[125]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[126]  D. Louis Collins,et al.  Multivariate Statistics for Detection of MS Activity in Serial Multimodal MR Images , 2003, MICCAI.

[127]  Dawei Huang,et al.  Testing for a Change in the Parameter Values and Order of an Autoregressive Model , 1995 .

[128]  Wayne S. DeSarbo,et al.  Modeling Dynamic Effects in Repeated-Measures Experiments Involving Preference/Choice: An Illustration Involving Stated Preference Analysis , 2004 .

[129]  Jushan Bai,et al.  Weak Convergence of the Sequential Empirical Processes of Residuals in ARMA Models , 1994 .

[130]  Francesco Battaglia,et al.  Fitting piecewise linear threshold autoregressive models by means of genetic algorithms , 2004, Comput. Stat. Data Anal..

[131]  Stefan Wagenpfeil,et al.  A MATLAB-Based Software Tool for Changepoint Detection and Nonlinear Regression in Dose-Response Relationships , 2000, ISMDA.

[132]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[133]  Robin L. Lumsdaine,et al.  Multiple Trend Breaks and the Unit-Root Hypothesis , 1997, Review of Economics and Statistics.

[134]  Gerri M. Dunnigan,et al.  A SAS-IML program for implementing two-phase regression analysis of geophysical time series data , 1997 .

[135]  Regina Kaiser,et al.  Detection and estimation of structural changes and outliers in unobserved components , 1999, Comput. Stat..

[136]  P. Hubert The segmentation procedure as a tool for discrete modeling of hydrometeorological regimes , 2000 .

[137]  Lajos Horváth,et al.  Applications of permutations to the simulations of critical values , 2004 .

[138]  Brian Dennis,et al.  COMPLEX POPULATION DYNAMICS IN THE REAL WORLD: MODELING THE INFLUENCE OF TIME-VARYING PARAMETERS AND TIME LAGS , 1998 .

[139]  D. Peña,et al.  Detecting nonlinearity in time series by model selection criteria , 2005 .

[140]  Giovanna Capizzi Design of change detection algorithms based on the generalized likelihood ratio test , 2001 .

[141]  Maximo Camacho,et al.  Vector smooth transition regression models for US GDP and the composite index of leading indicators , 2004 .

[142]  Miguel A. Márquez,et al.  Forecasting in a Small and Unstable Regional Economy Using Regime Shifting Models: The Case of Extremadura , 2003 .

[143]  A. Solow,et al.  A test for a regime shift , 2005 .

[144]  H. Luetkepohl,et al.  TESTING FOR A UNIT ROOT IN A TIME SERIES WITH A LEVEL SHIFT AT UNKNOWN TIME , 2002, Econometric Theory.

[145]  Venkata K. Jandhyala,et al.  Change‐point methods and their applications: contributions of Ian MacNeill , 1999 .

[146]  Douglas A. Wolfe,et al.  Nonparametric statistical procedures for the changepoint problem , 1984 .

[147]  Vera R. Eastwood Some Nonparametric Methods for Changepoint Problems , 1993 .

[148]  Kyong Joo Oh,et al.  Analyzing Stock Market Tick Data Using Piecewise Nonlinear Model , 2022 .

[149]  Biing-Shen Kuo Test for partial parameter instability in regressions with I(1) processes , 1998 .

[150]  Steven Cook Rank-based unit root testing in the presence of structural change under the null: simulation results and an application to US inflation , 2005 .

[151]  J K Lindsey,et al.  Models for estimating the change-point in gas exchange data. , 2004, Physiological measurement.

[152]  Pierre Perron,et al.  GLS Detrending, Efficient Unit Root Tests and Structural Change , 2003 .

[153]  J. Stock,et al.  Recursive and Sequential Tests of the Unit Root and Trend Break Hypothesis: Theory and International Evidence , 1990 .

[154]  Anthony R. Ives,et al.  Predicting the response of populations to environmental change , 1995 .

[155]  Cathy W. S. Chen,et al.  Subset threshold autoregression , 2003 .

[156]  William Remus,et al.  The impact of information of unknown correctness on the judgmental forecasting process , 1998 .

[157]  kwang-yul kim,et al.  A Comparison Study of EOF Techniques: Analysis of Nonstationary Data with Periodic Statistics , 1999 .

[158]  Bin Wang,et al.  A method for detecting season‐dependent modes of climate variability: S‐EOF analysis , 2005 .

[159]  G. Roberts,et al.  Markov chain Monte Carlo methods for switching diffusion models , 2001 .

[160]  A. Zeileis A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals , 2005 .

[161]  J. Petruccelli,et al.  A threshold AR(1) model , 1984, Journal of Applied Probability.

[162]  A.F.M. Smith,et al.  A bayesian analysis of some threshold switching models , 1985 .

[163]  Shelemyahu Zacks,et al.  Nonlinear time series analysis for dynamical systems of catastrophe type , 1988 .

[164]  P. Kokoszka,et al.  Change-Point Detection With Non-Parametric Regression , 2002 .

[165]  Piotr Kokoszka,et al.  MONITORING CONSTANCY OF VARIANCE IN CONDITIONALLY HETEROSKEDASTIC TIME SERIES , 2006, Econometric Theory.

[166]  Jerry Coakley,et al.  Numerical Issues in Threshold Autoregressive Modeling of Time Series , 2003 .

[167]  Christian M. Dahl,et al.  The Formation of Inflation Expectations under Changing Inflation Regimes , 2000 .

[168]  Marc Lavielle,et al.  The Multiple Change-Points Problem for the Spectral Distribution , 2000 .

[169]  Siu Hung Cheung,et al.  On robust estimation of threshold autoregressions , 1994 .

[170]  Joseph J. Pignatiello,et al.  A magnitude‐robust control chart for monitoring and estimating step changes for normal process means , 2002 .

[171]  Roman Liesenfeld,et al.  Timing Structural Change: A Conditional Probabilistic Approach , 2003 .

[172]  Peter Guttorp,et al.  Multiscale detection and location of multiple variance changes in the presence of long memory , 2000 .

[173]  Lajos Horváth,et al.  NONPARAMETRIC TESTS FOR THE CHANGEPOINT PROBLEM , 1987 .

[174]  Terence Tai Leung Chong,et al.  STRUCTURAL CHANGE IN AR(1) MODELS , 2001, Econometric Theory.

[175]  Atsuyuki Naka,et al.  Changing Risk, Return, and Leverage: The 1997 Asian Financial Crisis , 2004, Journal of Financial and Quantitative Analysis.

[176]  Marc B. Parlange,et al.  STATISTICS OF EXTREMES: MODELING ECOLOGICAL DISTURBANCES , 2005 .

[177]  Annette Menzel,et al.  Analysis of long-term time series of the beginning of flowering by Bayesian function estimation , 2005 .

[178]  M. Lavielle Detection of multiple changes in a sequence of dependent variables , 1999 .

[179]  Arjun K. Gupta,et al.  Change Points with Linear Trend Followed by Abrupt Change for the Exponential Distribution , 2002 .

[180]  Sheng Chen,et al.  Extended model set, global data and threshold model identification of severely non-linear systems , 1989 .

[181]  George Sugihara,et al.  Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean , 2005, Nature.

[182]  A. Kehagias,et al.  A dynamic programming segmentation procedure for hydrological and environmental time series , 2006 .

[183]  G Sugihara,et al.  Distinguishing error from chaos in ecological time series. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[184]  Jorge Belaire-Franch,et al.  Spurious rejection of the stationarity hypothesis in the presence of a break point , 2002 .

[185]  Hira L. Koul,et al.  Model diagnosis for setar time series , 2005 .

[186]  Ingoo Han,et al.  Using change-point detection to support artificial neural networks for interest rates forecasting , 2000 .

[187]  Boualem Kezim,et al.  A Bayesian Analysis of a Structural Change in the Parameters of a Time Series , 2004 .

[188]  Piotr Kokoszka,et al.  SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS , 2004, Econometric Theory.

[189]  Mark C. Strazicich,et al.  Testing the null of stationarity in the presence of a structural break , 2001 .

[190]  Stratford Douglas,et al.  Bootstrap confidence intervals in a switching regressions model , 1996 .

[191]  David B. Lindenmayer,et al.  Synthesis: Thresholds in conservation and management , 2005 .

[192]  Steven Cook,et al.  On the finite-sample size distortion of smooth transition unit root tests , 2004 .

[193]  Timothy J. Vogelsang,et al.  Testing for a Shift in Mean Without Having to Estimate Serial-Correlation Parameters , 1998 .

[194]  Kristian Jönsson,et al.  Using panel data to increase the power of modified unit root tests in the presence of structural breaks , 2005, Appl. Math. Comput..

[195]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[196]  F. Lombard A rank test for constancy of a location oil scale parameter , 1999 .

[197]  A. M. R. Taylor Fluctuation Tests for a Change in Persistence , 2005 .

[198]  Jingde Cheng,et al.  Detection of Network Faults and Performance Problems , 2001 .

[199]  Eiji Kurozumi Detection of Structural Change in the Long-Run Persistence in a Univariate Time Series , 2005 .

[200]  Jiahui Wang,et al.  A Bayesian Time Series Model of Multiple Structural Changes in Level, Trend, and Variance , 2000 .

[201]  T. Vogelsang Sources of nonmonotonic power when testing for a shift in mean of a dynamic time series , 1999 .

[202]  Koichi Maekawa,et al.  Estimating break points in a time series regression with structural changes , 2004, Math. Comput. Simul..

[203]  Andrew W. Moore,et al.  Algorithms for rapid outbreak detection: a research synthesis , 2005, J. Biomed. Informatics.

[204]  Y. Ogata,et al.  Some Statistical Features of the Long-Term Variation of the Global and Regional Seismic Activity , 1991 .

[205]  Igor V. Nikiforov A simple change detection scheme , 2001, Signal Process..

[206]  Zhongjie Xie,et al.  The wavelet identification for jump points of derivative in regression model , 2001 .

[207]  Michele Scagliarini,et al.  Monitoring algorithms for detecting changes in the ozone concentrations , 2000 .

[208]  Pierre Perron,et al.  Structural breaks with deterministic and stochastic trends , 2005 .

[209]  María José Presno,et al.  Testing for stationarity in series with a shift in the mean. A fredholm approach , 2003 .

[210]  Eiji Kurozumi,et al.  Testing for stationarity with a break , 2002 .

[211]  Richard A. Davis,et al.  Structural Break Estimation for Nonstationary Time Series Models , 2006 .

[212]  Chia-Shang James Chu,et al.  Time Series Segmentation: A Sliding Window Approach , 1995, Inf. Sci..

[213]  George E. P. Box,et al.  Intervention Analysis with Applications to Economic and Environmental Problems , 1975 .

[214]  Hyune-Ju Kim,et al.  Change-point detection for correlated observations , 1996 .

[215]  Rosangela Helena Loschi,et al.  Extension to the product partition model: computing the probability of a change , 2005, Comput. Stat. Data Anal..

[216]  Song S. Qian,et al.  Two statistical methods for the detection of environmental thresholds , 2003 .

[217]  T. Lai Sequential changepoint detection in quality control and dynamical systems , 1995 .

[218]  N. Mantua,et al.  Detecting regime shifts in the ocean: Data considerations , 2004 .

[219]  A. Gelfand,et al.  Spatio-temporal change-point modeling , 2005 .

[220]  Francesco Battaglia,et al.  Outlier Detection And Estimation In NonLinear Time Series , 2005 .

[221]  Jeffrey D. Scargle,et al.  An algorithm for optimal partitioning of data on an interval , 2003, IEEE Signal Processing Letters.

[222]  P. Rasmussen Bayesian Estimation of change points using the general linear model , 2001 .

[223]  Igor V. Nikiforov A simple recursive algorithm for diagnosis of abrupt changes in random signals , 2000, IEEE Trans. Inf. Theory.

[224]  Boris Darkhovsky,et al.  Asymptotically optimal methods of change-point detection for composite hypotheses , 2005 .

[225]  R H Riffenburgh,et al.  A simple and general change-point identifier. , 2006, Statistics in medicine.

[226]  M. Schell,et al.  The Reduced Monotonic Regression Method , 1997 .

[227]  T. Sapatinas,et al.  Wavelet Analysis and its Statistical Applications , 2000 .

[228]  R. Sneyers,et al.  Climate Chaotic Instability: Statistical Determination and Theoretical Background , 1997 .

[229]  Michèle Basseville,et al.  Detecting changes in signals and systems - A survey , 1988, Autom..

[230]  C. Loader CHANGE POINT ESTIMATION USING NONPARAMETRIC REGRESSION , 1996 .

[231]  Paul Newbold,et al.  More powerful modifications of unit root tests allowing structural change , 2005 .

[232]  Joon Y. Park,et al.  Testing for Unit Roots in Models with Structural Change , 1994, Econometric Theory.

[233]  Bruce E. Hansen,et al.  THRESHOLD AUTOREGRESSION WITH A UNIT ROOT , 2001 .

[234]  Anthony T. Cahill Determination of changes in streamflow variance by means of a wavelet-based test , 2002 .

[235]  H. White,et al.  Monitoring Structural Change , 1996 .

[236]  Ansgar Steland,et al.  On the distribution of the clipping median under a mixture model , 2005 .

[237]  T. Teräsvirta,et al.  Time-Varying Smooth Transition Autoregressive Models , 2003 .

[238]  H. Müller,et al.  Discontinuous versus smooth regression , 1999 .

[239]  D. B. Rubin,et al.  Bayesian Break-Point Forecasting in Parallel Time Series, with Application to University Admissions , 1987 .

[240]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[241]  Daniela Jarušková,et al.  Some Problems with Application of Change-Point Detection Methods to Environmental Data , 1997 .

[242]  Feng Gao,et al.  A novel time-domain auto-regressive model for structural damage diagnosis , 2005 .

[243]  Alain C. Vandal,et al.  Estimation in the multipath change point problem for correlated data , 1996 .

[244]  Kevin Grier,et al.  How Smart Is my Dummy? Time Series Tests for the Influence of Politics , 2005, Political Analysis.

[245]  W. Hsieh,et al.  Nonlinear interdecadal changes of the El Niño-Southern Oscillation , 2003 .

[246]  Paul Newbold,et al.  Spurious number of breaks , 1996 .

[247]  Venkata K. Jandhyala,et al.  Change-point methods for Weibull models with applications to detection of trends in extreme temperatures , 1999 .

[248]  David Hsieh Chaos and Nonlinear Dynamics: Application to Financial Markets , 1991 .

[249]  Martin Daumer,et al.  On-line change-point detection (for state space models) using multi-process Kalman filters , 1998 .

[250]  D. Andrews,et al.  Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis , 1992 .

[251]  Bernard Bobée,et al.  Bayesian change-point analysis in hydrometeorological time series. Part 2. Comparison of change-point models and forecasting , 2000 .

[252]  Claudia Kirch,et al.  Permutation principles for the change analysis of stochastic processes under strong invariance , 2006 .

[253]  Michael P. Clements,et al.  Forecasting economic processes , 1998 .

[254]  Yanhong Wu,et al.  On the biases of change point and change magnitude estimation after CUSUM test , 2006 .

[255]  Zachary G. Stoumbos,et al.  The detection and estimation of the change point in a disccrete-time stochastic system , 1999 .

[256]  Grégory Beaugrand,et al.  Monitoring pelagic ecosystems using plankton indicators , 2005 .

[257]  Mitsuru Nakagawa,et al.  The discontinuous trend unit root test when the break point is misspecified , 1999 .

[258]  Eric Ghysels,et al.  Changes in Seasonal Patters: Are They Cyclical , 1994 .

[259]  B. U. Park,et al.  Detection of a change point with local polynomial fits for the random design case , 2004 .

[260]  A. Welfe,et al.  The ADF-KPSS test of the joint confirmation hypothesis of unit autoregressive root , 2004 .

[261]  F. Lombard Rank tests for changepoint problems , 1987 .

[262]  Genshiro Kitagawa,et al.  Estimation of the arrival times of seismic waves by multivariate time series model , 1991 .

[263]  Timothy J. Vogelsang,et al.  Trend Function Hypothesis Testing in the Presence of Serial Correlation , 1998 .

[264]  Michael P. Clements,et al.  Forecasting Quarterly Aggregate Crime Series , 2005 .

[265]  NITYANDA SARKAR,et al.  Testing Predictability and Nonlinear Dependence in the Indian Stock Market , 2005 .

[266]  Y. Son,et al.  Bayesian single change point detection in a sequence of multivariate normal observations , 2005 .

[267]  G. C. Tiao,et al.  Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance , 1994 .

[268]  Daniela Jarušková,et al.  Change-point detection in meteorological measurement , 1996 .

[269]  Rob J Hyndman,et al.  CONTINUOUS TIME THRESHOLD AUTOREGRESSIVE MODELS , 1992 .

[270]  James F. Oehmke,et al.  Quantifying Structural Change in U.S. Agriculture: The Case of Research and Productivity , 2004 .

[271]  T. Karl,et al.  The record breaking global temperatures of 1997 and 1998: Evidence for an increase in the rate of global warming? , 2000 .

[272]  Marine Carrasco,et al.  Misspecified Structural Change, Threshold, and Markov-switching models , 2002 .

[273]  Stephen R. Carpenter,et al.  Management of eutrophication for lakes subject to potentially irreversible change , 1999 .

[274]  M. Holt,et al.  Nonlinear Dynamics and Structural Change in the U.S. Hog—Corn Cycle: A Time‐Varying Star Approach , 2006 .

[275]  Sana S. Buhamra,et al.  Testing for a change in repeated measures data , 1997 .

[276]  T. Rao On the Theory of Bilinear Time Series Models , 1981 .

[277]  William J. Fitzgerald,et al.  Parameter-based hypothesis tests for model selection , 1995, Signal Process..

[278]  Gilles Teyssière,et al.  Testing for bubbles and change-points , 2005 .

[279]  Jeffrey D. Scargle Studies in Astronomical Time Series Analysis: V. Bayesian Blocks, A New Method to Analyze Structure in , 1998 .

[280]  Lajos Horváth Detection of Changes in Linear Sequences , 1997 .

[281]  Paulin Coulibaly,et al.  Wavelet Analysis of the Interannual Variability in Southern Quebec Streamflow , 2004 .

[282]  Javier Hidalgo,et al.  Testing for structural change in a long-memory environment☆ , 1996 .

[283]  Jacques Bernier,et al.  Retrospective multivariate Bayesian change-point analysis: A simultaneous single change in the mean of several hydrological sequences , 2000 .

[284]  Marion R. Reynolds,et al.  Individuals control schemes for monitoring the mean and variance of processes subject to drifts , 2001 .

[285]  P. Chu,et al.  Bayesian Change-Point Analysis of Tropical Cyclone Activity: The Central North Pacific Case* , 2004 .

[286]  S. Carpenter,et al.  ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .

[287]  Kai-Sheng Song,et al.  Two-stage change-point estimators in smooth regression models , 1997 .

[288]  Michael McAleer,et al.  Recursive modelling of symmetric and asymmetric volatility in the presence of extreme observations , 2004 .

[289]  Lajos Horváth,et al.  Change in autoregressive processes , 1993 .

[290]  Heung Wong,et al.  Testing and estimation of thresholds based on wavelets in heteroscedastic threshold autoregressive models , 2003 .

[291]  Ansgar Steland,et al.  Nonparametric monitoring of financial time series by jump-preserving control charts , 2002 .

[292]  Peter R. Leavitt,et al.  Increased ecosystem variability and reduced predictability following fertilisation: Evidence from palaeolimnology , 2000 .

[293]  John R. Lanzante,et al.  Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data , 1996 .

[294]  J. L. Labajo,et al.  Temporal behaviour of the annual mean pressure on the northern Spanish plateau between 1945 and 1994 , 1998 .

[295]  H. Caswell,et al.  Reactivity and transient dynamics of discrete-time ecological systems , 2005 .

[296]  Tze Leung Lai Sequential multiple hypothesis testing and efficient fault detection-isolation in stochastic systems , 2000, IEEE Trans. Inf. Theory.

[297]  Chia-Shang James Chu,et al.  A Direct Test for Changing Trend , 1992 .

[298]  Thorsten Poddig,et al.  Data Mining for the Detection of Turning Points in Financial Time Series , 1999, IDA.

[299]  Quang M. Tieng,et al.  Local linear kernel regression with long-range dependent errors , 1999 .

[300]  Henri Caussinus,et al.  Detection and correction of artificial shifts in climate series , 2004 .

[301]  Yeow Meng Thum,et al.  Detecting a Change in School Performance: A Bayesian Analysis for a Multilevel Join Point Problem , 2001 .

[302]  Jan Beran,et al.  Testing for a change of the long-memory parameter , 1996 .

[303]  Paul Newbold,et al.  Unit root tests with a break in innovation variance , 2002 .

[304]  Pao-Shin Chu,et al.  Bayesian Multiple Changepoint Analysis of Hurricane Activity in the Eastern North Pacific: A Markov Chain Monte Carlo Approach , 2006 .

[305]  Georgia Salanti,et al.  A nonparametric changepoint model for stratifying continuous variables under order restrictions and binary outcome , 2003, Statistical methods in medical research.

[306]  Z. Kundzewicz,et al.  Searching for change in hydrological data , 2004 .

[307]  Michael P. Clements,et al.  Intercept Corrections and Structural Change , 1996 .

[308]  Larry H. Crow,et al.  Reliability Analysis for Complex, Repairable Systems , 1975 .

[309]  Chang-Jin Kim,et al.  The Less-Volatile U.S. Economy , 2001 .

[310]  Piotr Kokoszka,et al.  Approximations for weighted bootstrap processes with an application , 2000 .

[311]  S. Chib Estimation and comparison of multiple change-point models , 1998 .

[312]  J. Foster,et al.  Structural change in macroeconomic time series: A complex systems perspective , 2006 .

[313]  Jae-Young Kim Detection of change in persistence of a linear time series , 2000 .

[314]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[315]  É. Moulines,et al.  Least‐squares Estimation of an Unknown Number of Shifts in a Time Series , 2000 .

[316]  Henghsiu Tsai,et al.  Testing for nonlinearity with partially observed time series , 2000 .

[317]  Okyoung Na,et al.  On the cusum of squares test for variance change in nonstationary and nonparametric time series models , 2003 .

[318]  Marie Hušková,et al.  Serial rank statistics for detection of changes , 2003 .

[319]  Hal Caswell,et al.  Reactivity and transient dynamics of predator–prey and food web models , 2004 .

[320]  Jeremy Penzer,et al.  Diagnosing Shocks in Time Series , 1998 .

[321]  Lajos Horváth,et al.  LIMIT THEOREMS FOR QUADRATIC FORMS WITH APPLICATIONS TO WHITTLE'S ESTIMATE , 1999 .

[322]  Bovas Abraham,et al.  Intervention analysis and multiple time series , 1980 .

[323]  P. Perron,et al.  Further Evidence on Breaking Trend Functions in Macroeconomic Variables. , 1997 .

[324]  Andrew Harvey,et al.  Seasonality Tests , 2003 .

[325]  I. V. Nikiforov Quadratic tests for detection of abrupt changes in multivariate signals , 1999, IEEE Trans. Signal Process..

[326]  M. Slivitzky,et al.  Detection of changes in precipitation and runoff over eastern Canada and U.S. using a Bayesian approach , 1999 .

[327]  P. Perron,et al.  Computation and Analysis of Multiple Structural-Change Models , 1998 .

[328]  L. Perreaulta,et al.  Bayesian change-point analysis in hydrometeorological time series . Part 1 . The normal model revisited , 2000 .

[329]  Joe H. Sullivan,et al.  Detection of Multiple Change Points from Clustering Individual Observations , 2002 .

[330]  Helmut Lütkepohl,et al.  Testing for the Cointegrating Rank of a VAR Process With Structural Shifts , 2000 .

[331]  Ath. Kehagias,et al.  A hidden Markov model segmentation procedure for hydrological and environmental time series , 2004 .

[332]  Bruce E. Hansen,et al.  INSTRUMENTAL VARIABLE ESTIMATION OF A THRESHOLD MODEL , 2004, Econometric Theory.

[333]  M. Hashem Pesaran,et al.  How Costly is it to Ignore Breaks When Forecasting the Direction of a Time Series? , 2003, SSRN Electronic Journal.

[334]  Marc Lavielle,et al.  Using penalized contrasts for the change-point problem , 2005, Signal Process..

[335]  Mehmet Caner A NOTE ON LEAST ABSOLUTE DEVIATION ESTIMATION OF A THRESHOLD MODEL , 2002, Econometric Theory.

[336]  Andrew Harvey,et al.  Testing for the Presence of a Random Walk in Series with Structural Breaks , 1998 .

[337]  Howell Tong,et al.  Threshold Autoregressive Modeling in continuous-time , 1991 .

[338]  T. N. Sriram,et al.  Sequential point estimation of parameters in a threshold AR(1) model , 1999 .

[339]  Howell Tong Discontinuous decision processes and threshold autoregressive time series modelling , 1982 .

[340]  J. Bai,et al.  Least Absolute Deviation Estimation of a Shift , 1995, Econometric Theory.

[341]  Stergios B. Fotopoulos,et al.  Capturing the distributional behaviour of the maximum likelihood estimator of a changepoint , 1999 .

[342]  Peter Domonkos,et al.  Recent increase in persistence of atmospheric circulation over Europe: comparison with long‐term variations since 1881 , 2006 .

[343]  Okyoung Na,et al.  The Cusum Test for Parameter Change in Time Series Models , 2003 .

[344]  Edward Carlstein,et al.  Nonparametric Change-Point Estimation for Data from an Ergodic Sequence , 1994 .

[345]  Piotr Omenzetter,et al.  Application of time series analysis for bridge monitoring , 2006 .

[346]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[347]  Luca Ridolfi,et al.  Clues to the existence of deterministic chaos in river flow , 1996 .

[348]  E. Campbell Bayesian selection of threshold autoregressive models , 2004 .

[349]  A. Lee,et al.  A Shift Of The Mean Level In A Sequence Of Independent Normal Random Variables—A Bayesian Approach— , 1977 .

[350]  Christine Amsler,et al.  An LM Test for a Unit Root in the Presence of a Structural Change , 1995, Econometric Theory.

[351]  John A. List,et al.  Examining Trends of Criteria Air Pollutants: Are the Effects of Governmental Intervention Transitory? , 2004 .

[352]  Hans-Martin Krolzig,et al.  Business Cycle Measurement in the Presence of Structural Change: International Evidence , 2001 .

[353]  Sheng Yue,et al.  A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection / Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance , 2004 .

[354]  Byeongseon Seo,et al.  TESTS FOR STRUCTURAL CHANGE IN COINTEGRATED SYSTEMS , 1998, Econometric Theory.

[355]  Lutz Kilian,et al.  UNIT ROOTS, TREND BREAKS, AND TRANSITORY DYNAMICS: A MACROECONOMIC PERSPECTIVE , 2002, Macroeconomic Dynamics.

[356]  Faouzi Lyazrhi Bayesian criteria for discriminating among regression models with one possible change point , 1997 .