Light-toned layered deposits in Juventae Chasma, Mars

[1]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[2]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[3]  Mark I. Richardson,et al.  Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth , 2003 .

[4]  C. J. Byrne North Polar Region , 2005 .

[5]  Trent M. Hare,et al.  Possible Juventae Chasma subice volcanic eruptions and Maja Valles ice outburst floods on Mars: Implications of Mars Global Surveyor crater densities, geomorphology, and topography , 2003 .

[6]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[7]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[8]  Jeffrey J. Plaut,et al.  Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars , 2000 .

[9]  R. Haberle,et al.  Atmospheric effects on the remote determination of thermal inertia on mars , 1991 .

[10]  M. Mellon,et al.  Mars' "White Rock" Feature Lacks Evidence of an Aqueous Origin , 2000 .

[11]  J. McCauley,et al.  Geologic map of the Coprates Quadrangle of Mars , 1978 .

[12]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[13]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[14]  B. Lucchitta,et al.  Topography of Valles Marineris: Implications for erosional and structural history , 1994 .

[15]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[16]  T. Quinn,et al.  A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes , 2004 .

[17]  F. Fanale,et al.  New models for the origin of Valles Marineris closed depressions , 1990 .

[18]  A. Vasavada,et al.  Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits☆ , 1999 .

[19]  R. Greenberg,et al.  Viscosity and Mass Transport in Keplerian Disks with Radial Gradients in Surface Density , 1988 .

[20]  P. Komar Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth , 1979 .

[21]  C. Peterson A secondary origin for the central plateau of Hebes Chasma , 1982 .

[22]  D. Paige,et al.  Modeling the Martian seasonal CO2 cycle 2. Interannual variability , 1992 .

[23]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[24]  S. Squyres,et al.  Origin and evolution of the layered deposits in the Valles Marineris, Mars , 1987 .

[25]  Robert P. Sharp,et al.  Mars: Fretted and chaotic terrains , 1973 .

[26]  Kenneth L. Tanaka,et al.  Interior trough deposits on Mars: Subice volcanoes? , 2001 .

[27]  H. Wänke,et al.  Chemistry and accretion history of Mars , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[28]  M. Malin,et al.  The Geomorphic Expression of North Versus South Polar Layered Outcrops on Mars at Meter to Decameter Scales , 2000 .

[29]  R. Clark,et al.  Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.

[30]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[31]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[32]  David C. Catling,et al.  The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars , 2003 .

[33]  V. Baker,et al.  Martian channel morphology - Maja and Kasei Valles , 1979 .

[34]  L. Hardie,et al.  THE GYPSUM-ANHYDRITE EQUILIBRIUM AT ONE ATMOSPHERE PRESSURE1 , 2007 .

[35]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[36]  John SantaLucia,et al.  THE THERMODYNAMICS OF , 2004 .

[37]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[38]  O. Knacke,et al.  The Thermodynamics of the System CaSO4—H2O , 1977 .

[39]  Gordon Atkinson,et al.  The thermodynamics of "scale" mineral solubilities. 3. Calcium sulfate in aqueous sodium chloride , 1990 .

[40]  The Interior Layered Deposits of Valles Marineris: Layering, Erosional Processes, and Age Relationships , 2001 .

[41]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[42]  S. S. Nedell,et al.  Are there carbonate deposits in the Valles Marineris, Mars? , 1988, Icarus.

[43]  A. McEwen New Age Mars , 2004 .

[44]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian atmosphere: 1. Polar processes , 1990 .

[45]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[46]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[47]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[48]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[49]  D. Bottjer,et al.  Sedimentary Environments and Facies , 1978 .

[50]  J. Böhlke,et al.  Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions , 2004 .

[51]  G. Komatsu,et al.  Interior layered deposits of Valles Marineris, Mars: analogous subice volcanism related to Baikal Rifting, Southern Siberia , 2004 .

[52]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[53]  R. Singer,et al.  Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars , 1993 .

[54]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[55]  D. Montgomery,et al.  Formation of Martian outflow channels by catastrophic dewatering of evaporite deposits , 2005 .

[56]  Wood,et al.  Modeling the Martian Seasonal C02 Cycle , 2002 .

[57]  David A. Paige,et al.  Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region , 1994 .

[58]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[59]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[60]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian Atmosphere: 2. Seasonal pressure variations , 1993 .

[61]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[62]  Robert M. Haberle,et al.  Orbital change experiments with a Mars general circulation model , 2003 .

[63]  C. Stevens Was development of brackish oceans a factor in Permian extinctions , 1977 .

[64]  W. Bucher "STRATH" AS A GEOMORPHIC TERM. , 1932, Science.

[65]  Mark H. Thiemens,et al.  Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites , 2000, Nature.