Schrödinger fluid dynamics of many‐electron systems in a time‐dependent density‐functional framework

For an N‐electron system, a connection is explored between density‐functional theory and quantum fluid dynamics, through a dynamical extension of the former. First, we prove the Hohenberg–Kohn theorem for a time‐dependent harmonic perturbation under conditions which guarantee the existence of the corresponding steady (or quasiperiodic) states of the system. The corresponding one‐particle time‐dependent Schrodinger equation is then variationally derived starting from a fluid‐dynamical Lagrangian density. The subsequent fluid‐dynamical interpretation preserves the ’’particle’’ description of the system in the sense that the N‐electron fluid has N components each of which is an independent‐particle Schrodinger fluid characterized by a density function ρj and an irrotational velocity field uj, j = 1,⋅⋅⋅,N. However, the mean velocity u of the fluid is not irrotational, in general. The force densities and the stress tensor occurring in the Navier–Stokes equation are physically interpreted. The present work is a...

[1]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[2]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[3]  H. E. Wilhelm Hydrodynamic model of quantum mechanics , 1970 .

[4]  S. Ying Hydrodynamic response of inhomogeneous metallic systems , 1974 .

[5]  N. H. March,et al.  An Approximate Differential Equation for Calculating the Electron Density in Closed Shell Atoms and in Molecules , 1980 .

[6]  R. O. Jones,et al.  Density functional theory and molecular bonding. II. Alkali dimers , 1978 .

[7]  P. Löwdin,et al.  SOME COMMENTS ON THE TIME-DEPENDENT VARIATION PRINCIPLE. , 1972 .

[8]  T. Takabayasi,et al.  On the Formulation of Quantum Mechanics associated with Classical Pictures , 1952 .

[9]  P. W. Langhoff,et al.  Aspects of Time-Dependent Perturbation Theory , 1972 .

[10]  N. H. March,et al.  The Thomas-Fermi approximation in quantum mechanics , 1957 .

[11]  James J. Griffin,et al.  Colliding heavy-ions - nuclei as dynamical fluids , 1976 .

[12]  A. Rajagopal Inhomogeneous relativistic electron gas , 1978 .

[13]  W. Kohn,et al.  Density Functional Theory of Chemisorption on Metal Surfaces. , 1975 .

[14]  G. Holzwarth,et al.  Nuclear fluid dynamics , 1978 .

[15]  R. O. Jones,et al.  Density Functional Calculations for Atoms, Molecules and Clusters , 1980 .

[16]  J. Gillis,et al.  Variational principles in dynamics and quantum theory , 1956 .

[17]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[18]  O. Bohigas,et al.  Derivation of a fluid-dynamical lagrangian and electric giant resonances , 1980 .

[19]  E. Heller Time dependent variational approach to semiclassical dynamics , 1976 .

[20]  Allan H. MacDonald,et al.  A relativistic density functional formalism , 1979 .

[21]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[22]  R. L. Seliger,et al.  Variational principles in continuum mechanics , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Albert C. Christoph,et al.  Quantum mechanical streamlines. I. Square potential barrier , 1974 .

[24]  J. Hirschfelder Quantum mechanical equations of change. I , 1978 .

[25]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[26]  M. Schönberg,et al.  On the hydrodynamical model of the quantum mechanics , 1954 .

[27]  M. Demiralp,et al.  Variational time‐dependent perturbation scheme based on the hydrodynamic analogy to Schrödinger's equation , 1974 .

[28]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[29]  B. Deb,et al.  The role of single-particle density in chemistry , 1981 .

[30]  J. Hirschfelder The angular momentum, creation, and significance of quantized vortices , 1977 .

[31]  J. Maruhn,et al.  Dynamics of nuclear fluid: (I). Foundation , 1975 .

[32]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[33]  R. Parr,et al.  The concept of pressure in density functional theory , 1980 .

[34]  R. Bader,et al.  Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule , 1980 .

[35]  C. Wong On the Schrödinger equation in fluid‐dynamical form , 1976 .

[36]  Internal stresses in molecules II. a local view of chemical binding in the H molecule , 1979 .

[37]  J. Griffin,et al.  Single-particle Schrödinger fluid. I. Formulation , 1977 .

[38]  Joyce M. Okuniewicz Quasiperiodic pointwise solutions of the periodic, time‐dependent Schrödinger equation , 1974 .

[39]  F. Bloch,et al.  Bremsvermögen von Atomen mit mehreren Elektronen , 1933 .

[40]  B. Deb,et al.  The Force Concept in Chemistry , 1981 .

[41]  B. Deb On some 'local' force densities and stress tensors in molecular quantum mechanics , 1979 .

[42]  Malcolm J. Stott,et al.  Linear-response theory within the density-functional formalism: Application to atomic polarizabilities , 1980 .

[43]  D. Schütte,et al.  Vorticity in nuclear fluid dynamics , 1978 .

[44]  L. Bartolotti,et al.  An alternative functional to determine dynamic multipole polarizabilities , 1978 .

[45]  D. Hestenes,et al.  Consistency in the formulation of the Dirac, Pauli, and Schrödinger theories , 1975 .

[46]  Bound excited states in density-functional theory , 1981 .

[47]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[48]  R. Hasse Approaches to nuclear friction , 1978 .

[49]  J. Frenkel,et al.  Wave mechanics: Advanced general theory , 1934 .

[50]  Comments on variational approximations within the hydrodynamic model , 1979 .

[51]  W. Adams Orbital Self-Consistent-Field Theory. II. Natural Orbital Hamiltonian , 1969 .