Mathematical models for the drying of rigid porous materials

This paper presents a resume of literature on theories and mathematical models for drying of rigid porous materials. Key work on drying by soil physicists has been neglected in the engineering drying literature. We have included these works here to bring this literature to the attention of engineers. A new and general model for moisture and energy transport in rigid porous media during drying is presented. It is demonstrated that under certain simplifying assumptions, the general model reduces to less general models which have previously been proposed. Experimental and simulation results are given for the drying of Valentine sand. Under the drying conditions studied, the drying rate during the falling rate period is controlled by the capillary flow of water to an evaporation zone in the porous media. The models simulated here are of varying complexity and rigor. The capabilities and limitations of these models are discussed. On presente dans ce travail un resume des publications relatives aux theories et aux modeles mathematiques sur le sechage des materiaux poreux et rigides. On a neglige de tenir compte, dans les publications technologiques sur le sechage, des travaux de prime importance executes par les physiciens specialises dans les sols; nous incluons ici ces travaux pour que les ingenieurs en soient mis au courant. On presente un modele nouveau et general pour le transport, durant le sechage, de l'humidite et de l'energie; on demontre qu'en faisant certaines suppositions de simplification, le modele general se transforme en des modeles moins generaux qui out deja ete proposes. On presente les resultats des experiences et de la simulation dans le cas du sechage du sable Valentine. Dans les conditions de sechage etudiees, le taux de sechage durant la periode decroissante de celui-ci est regi par le mouvement capillaire de l'eau vers une zone d'evaporation dans les milieux poreux. Les modeles qu'on a simules ont une complexite et une precision variables; on en discute les possibilites et les limitations.

[1]  G. Fulford A survey of recent soviet research on the drying of solids , 1969 .

[2]  K. Daizo,et al.  Particle-to-fluid heat and mass transfer in packed beds of fine particles , 1967 .

[3]  Norman H. Ceaglske,et al.  Drying Granular Solids , 1937 .

[4]  T. Sherwood The Drying of solids—II , 1929 .

[5]  T. Sherwood The Drying of Solids—III1 Mechanism of the Drying of Pulp and Paper , 1930 .

[6]  R. G. Barile,et al.  Gas-Particle Heat Transfer Coefficients in Packed Beds at Low Reynolds Numbers , 1968 .

[7]  T. Harmathy Simultaneous Moisture and Heat Transfer in Porous Systems with Particular Reference to Drying , 1969 .

[8]  W. K. Lewis The Rate of Drying of Solid Materials. , 1921 .

[9]  J. R. Philip,et al.  Moisture movement in porous materials under temperature gradients , 1957 .

[10]  D. Pei,et al.  DRYING OF HYGROSCOPIC CAPILLARY POROUS SOLIDS --A THEORETICAL APPROACH , 1973 .

[11]  H. R. Gardner,et al.  Evaporation of Water From Soils As Influenced By Drying With Wind or Radiation , 1967 .

[12]  H. L. Penman Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids , 1940, The Journal of Agricultural Science.

[13]  D. R. Nielsen,et al.  Scaling of Horizontal Infiltration into Homogeneous Soils , 1972 .

[14]  J. Cary,et al.  The Interaction of the Simultaneous Diffusions of Heat and Water Vapor 1 , 1962 .

[15]  E. E. Miller,et al.  Physical Theory for Capillary Flow Phenomena , 1956 .

[16]  J. W. Cary,et al.  Thermally Driven Liquid and Vapor Phase Transfer of Water and Energy in Soil 1 , 1962 .

[17]  T. Sherwood,et al.  The Drying of Solids.V. Mechanism of Drying of Clays , 1933 .

[18]  W. J. Staple,et al.  Comparison of Computed and Measured Moisture Redistribution Following Infiltration 1 , 1969 .

[19]  L. G. King,et al.  DESCRIPTION OF SOIL CHARACTERISTICS FOR PARTIALLY SATURATED FLOW , 1965 .