An integrated MEMS system for turbulent boundary layer control

The goal of this project is a first attempt to achieve active drag reduction using a large-scale integrated MEMS system. Previously, we have reported the successful development of a shear-stress imager which allows us to "see" surface vortices (1996). Here we present the promising results of the interaction between micro flap actuators and vortices. It is found that microactuators can actually reduce drag to values even lower than the drag associated with pure laminar flow, and that the microactuators can reduce shear stress values in turbulent flow as well. Based on these results, we have attempted the first totally integrated system that consists of 18 shear stress sensors, 3 magnetic flap-type actuators and control electronics for use in turbulent boundary layer control studies.

[1]  Chih-Ming Ho,et al.  A surface-micromachined shear stress imager , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[2]  Chih-Ming Ho,et al.  Micromachined magnetic actuator for active fluid control , 1994 .